Studying solar-relevant flux rope eruptions in the laboratory

Clayton E. Myers October 26, 2012

Collaborators: M. Yamada, H. Ji, J. Yoo, E. E. Lawrence, J. Jara-Almonte, T. D. Tharp, R. M. Kulsrud, S. Dorfman, and E. Oz

Line-tied magnetic flux ropes in MRX

- Fill pressure: 1-100 mTorr
- Gases: H₂, He, CH₄, Ar
- Magnetic field: ~1-2 kG
- Discharge duration: ~700 μs
- Alfvén transit time: ~ 1 µs
- Scale length: ~60 cm
- Peak current: ~25 kA
- Density: ~10¹³⁻¹⁴ cm⁻³?
- Temperature: ~10-15 eV?

A typical MRX flux rope discharge

- Quasi-static equilibrium expansion and contraction occurs on timescales that are much longer than the Aflvén time
- The external kink instability grows about this equilibrium when the current in the flux rope is above the kink stability threshold

How can we contribute to understanding solar eruptions?

Savcheva et al., ApJ, 2012

- How do quiescent active regions suddenly transition to a violent eruption?
- We will experimentally "simulate" the topology of a solar active region in the hopes of providing some insight into how flux ropes erupt in the solar corona

Torus instability and/or loss-of-equilibrium

Titov & Démoulin, A&A, 1999

- Progressively rising hoop forces slowly drive the flux rope to expand
- Confining fields fall off with altitude above the solar surface
- A point is reached where the restoring forces can no longer counter an outward perturbation to the flux rope

Török & Kliem, ApJ, 2005

Modifying the MRX potential field configuration

- The relevant parameter for the "torus instability" is the field decay index n(z) (see right)
- The present "line current" potential fields in MRX do not exceed a field decay index of n=1

$$B(z) = B_0 \left(\frac{z_0}{z}\right)^n$$
$$n(z) = -\left(\frac{z}{B}\right) \frac{dB}{dz}$$

New active-region-like potential field coils

New active-region-like potential field coils

Tuning the field decay index in MRX

- The field decay index profile can be controlled in the new MRX campaign by tuning the currents in the various potential field coils
- We plan to locate and explore the experimental regimes where a loss-of-equilibrium or the torus instability drives a flux rope eruption

$$B(z) = B_0 \left(\frac{z_0}{z}\right)^n$$

$$n(z) = -\left(\frac{z}{B}\right)\frac{dB}{dz}$$

New active-region-like potential field coils

