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Iwo Key Formation Mechanisms
Magnetic Shear <}::> Velocity Shear

Tearing Kelvin-Helmholtz
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| | * Inherently non-linear
* Linear mechanism * KH vortex + reconnection
* lon or electron scale layers * lon or electron layers
* Threshold B, * Threshold shear V, > Vy,
* Growth rate: e Growth rate
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Righlight new papers that illustrate
both mechanisms & their coupling

|. Pure velocity shear
2. Velocity & magnetic shear

3. Force-free current sheets



Pure Velocity Shear

Karimabadi, Roytershteyn,Wan et al, PoP, 2012
Wan, Mattheaus, Karimbadiet al, PRL, 2012




Fully kinetic 2D simulation of Kelvin-Helmoltz

e Vortex scale ~ 50d;

e Kinetic scale layers

* Tearing + reconnection

* Power law spectra £'p kIS/S
* Electron heating dominant

* In-plane B is crucial
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Tearing instability & reconnection is triggered
in current sheets with in-plane B reversal
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clectron Heating In Layers

4v7, < By < 5vp,



Electrons get majority of energy!
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Weak in-plane
field plays
essential role!
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Magnetic & Velocity Shear

Nakamura, Daughton, Karimabadi, JGR, 2012
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Two-Dimensional Evolution
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Three-Dimensional Evolution
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Poincare Recurrence Map
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Finite Time Lyapunov Exponent = FTLE

0 7.36979



Mixing rate is enhanced due to 3D
magnetic field structure

',

Mixing rate enhanced > 3x in 3D case
Relevant to the lower latitude
boundary layer in Earth’s magnetopause




Pure Magnetic Shear:
Force-free Current Sheet

Yi-Hsin Liu, Daughton, Karimabadi, 2012
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Oblique Tearing Growth Rates
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* Oblique tearing modes are unstable over a wide range of angles
* The most unstable tearing mode becomes oblique when §, > 1



Oblique tearing is the dominant instability

provided that we avoid Buneman instability Ue < 1.5Vipe
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by = 2.0
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Oblique Flux Ropes Domina



Generalized Ohms Law
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Summary

& lon-scale boundary layers often include some combination of
magnetic and velocity shear

& Large-scale magnetic shear will naturally drive reconnection and
these flows may in turn drive Kelvin-Helmoltz

& Alfvenic velocity shear leads to KH vortices which generates
current sheets & drives reconnection

& In real 3D applications, both of these mechanisms leads to flux
ropes, turbulence and heating within these structures

& Spectra in all simulations feature power law in fluctuations with
break at kinetic scales
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¥ Influence on particle mixing across boundary layers
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