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Observation of Self-Similarity in the Magnetic Fields 
Generated by the Nonlinear Rayleigh–Taylor Instability



The scale-invariant regime of nonlinear Rayleigh–Taylor 
(RT) instability has been probed with proton radiography 

E21629a

Summary

• The RT-generated magnetic-field distribution and its evolution 
were investigated using laser-driven CH targets

• The structural evolution was found to be scale invariant

• The data are consistent with a bubble competition and merger 
model;* the merger rate has been determined

*O. Sadot et al., Phys. Rev. Lett. 95, 265001 (2005). 

The role of magnetic reconnection in this process is unknown.
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The growth rate for RT instability in laser-driven 
targets was inferred with x-ray radiography
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V. A. Smalyuk et al., Phys. Rev. Lett. 81, 5342 (1998).

X-ray photons are sensitive to density modulations.  



The RT instability in laser-driven targets generates large 
amounts of fluid vorticity*
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*K. Mima, T. Tajima, and J. N. Leboeuf, Phys. Rev. Lett. 41, 1715 (1978);
R. G. Evans, Plasma Phys. Control. Fusion. 28, 1021 (1986);
R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006).

Azimuthal magnetic fields are generated by   ne ×   Te.d d



Magnetic-field generation has been studied 
in side-on and face-on geometries using 
the acceleration of planar targets
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Target-normal sheath acceleration (TNSA)* generates 
MeV proton beams in intense (>1018 W/cm2)  
laser–solid interaction 
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• Hot electrons escape from  
the rear side of the target

• An electrostatic field is built up,  
with a field gradient of the order  
of MeV/nm

• Protons are accelerated  
to tens of MeV

*S. C. Wilks et al., Phys. Plasmas 8, 542 (2001).

Laser-driven protons are ultra bright, extremely collimated and have 
high peak energy (58 MeV) and short burst duration (picosecond scale).
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The virtual proton source is much smaller 
than the laser spot*
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*M. Borghesi et al., Phys. Rev. Lett. 92, 055003 (2004);
 T. E. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004).



25-nm-thick CH targets were unbroken 
by instability formation
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Magnetic-field cell size doubles in 500 ps. 

Proton radiography of 15-nm-thick foils reveals 
magnetic-field generation and its evolution*
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*L. Gao et al., Phys. Rev. Lett. 109, 115001 (2012).
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MG-level magnetic fields are predicted in a broken  
15-nm-thick CH foil using 2-D magnetohydrodynamic (MHD) 
DRACO* simulations

*D. Keller et al., Bull. Am. Phys. Soc. 44, 37 (1999);
P. B. Radha et al., Phys. Plasmas 12, 032702 (2005).



DRACO reproduces the measured foil trajectory
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Face-on probing reveals magnetic-field generation 
by the RT instability
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The magnetic-field spatial distribution was characterized 
using the watershed algorithm
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The number of magnetic cells decreases and the 
magnetic cell diameter increases with time 
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The normalized magnetic-field spatial distribution 
evolves self-similarly
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The evolution of the magnetic-field spatial 
distribution is consistent with an RT bubble 
competition and merger model*
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 *O. Sadot et al., Phys. Rev. Lett. 95, 265001 (2005);  
D. Oron et al., Phys. Plasmas 8, 2883 (2001);  
U. Alon et al., Phys. Rev. Lett. 72, 2867 (1994).

**L. Gao  et al., “Observation of Self-Similarity in the Magnetic Fields Generated by the  
Ablative Nonlinear Rayleigh–Taylor Instability,” submitted to Physical Review Letters.



The high-energy-density plasma is flow dominated  
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Parameter Symbol OMEGA EP

Peak plasma density ne0 5 × 1022 cm–3

Temperature Te 50 eV

Magnetic field B 106 G

Alfven speed VA 7 × 103 m s–1

Sound speed Cs 6 × 104 m s–1

Estimated inflow Vin ~Cs

Plasma beta b 100

Lundquist number S0 0.06 to 0.2

Hall parameter ~ce/oe0 0.1

Magnetic Reynolds 
number Rm 0.5 to 1.0

Diffusion time x 0.1 to 1.0 ns



Global magnetic organization occurs  
as a result of diffusive magnetic reconnection
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Summary/Conclusions

The scale-invariant regime of nonlinear Rayleigh–Taylor 
(RT) instability has been probed with proton radiography 
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• The RT-generated magnetic-field distribution and its evolution 
were investigated using laser-driven CH targets

• The structural evolution was found to be scale invariant

• The data are consistent with a bubble competition and merger 
model;* the merger rate has been determined

*O. Sadot et al., Phys. Rev. Lett. 95, 265001 (2005). 

The role of magnetic reconnection in this process is unknown.



The distribution of magnetic-field ringlets
in CH targets shifts to longer wave lengths
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