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SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE
MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE
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AstroBEAR Basics
Reconstruction
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F,, and F' are suitably accurate numerical approximations to the inter-cell flux,




AstroBEAR Basics
Riemann Solver and Time Stepping

1
Fr,i—l, =B (F 'QL!-I""'+F .QR:— “")

‘) E L"‘ i=1/2 ( ™ [QR i—-1/2 QL i—-1 ")]_) mi—1/2-

The MUSCL-Hancock predictor-corrector temporal discretization achieves second order
accuracy by advancing the grid-face interpolated states by a half-time-step using a one
dimensional predictor scheme. The predictor scheme 1s carried forward according to:
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Note that the predictor step uses the cell centered, volume average fluxes. The Riemann
problem at the cell nterfaces 1s not solved and the upwinded flux at the cell-faces are not
needed for this step.




AMR MHD: DivB =0

~ Hydro: Need conservative prolongation/ restriction
operators.

~ MHD: Maintain solenoidal condition. Need
divergence free operators on “staggered mesh”.
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AstroBEAR 1.0 MHD-AMR Code

AstroBEAR strategy: Use a variety of
methods

* Reconstruction: Muscl, PPM, PPH
* Riemann Solvers: Roe, HLLD, Marquina
* Integration Schemes: RK, Muscl-Hancock

MHD CT: Ryu et al (925),
Balsara & Spicer (29)



Mesh

Tree

A\

Level 2 nodes are chiidren of level 1 nodes

The AMR tree contains all of the parent-child relationships
between grids on different levels as well as neighbor
relationships between grids on the same level.

Level 2 grids nested within parent level 1 grids

AMR Parallel Performance
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AB 2.0: Parallel AMR Performance

Carroll, Shroyer, Frank & Ding 2011
N

11 Scrambler: Load balance AMR grid hierarchy

Runtime Efficiency vs. Nr. Processors
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Shocked Radiative MHD Heterogeneous Flows
(Frank et al 2011)

= Low Clump Filling Fraction

By sparse (hotboxes) t = 0.00t,
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Star Formation Studies w AstroBEAR 2.0
Carroll et al 2011

Molecular
Clouds:
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Star Formation Studies w/ AstroBEAR 2.0

Carroll et al 2011
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Star Formation Studies w/ AstroBEAR 2.0

Time=3.13883<-300 WMyr Tire=0 Lyt

2 Runs: Different AMR Refinement Criterion.
Maps of Density



Clumpy Jet Models: Yirak et al 2011
Synthetic Observations Green How Red [SlI]
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Magnetic Tower Simulations

Huarte-Espinoza et al 2011
o

The magnetic vector potential is given by

Alr.z) = { 7(cos(27) + 1)(cos(2 z) + 1)¢ + 2(cos(27) + 1)(cos(2 z) + 1)k, forr,z<r;
0, for r,z > ry,
(2)
in cylindrical coordinates, where r, = 7/2 is the radius of the magnetic injection region.
The parameter « is an integer with units of length. Inside the column, A can also be

written as

A(r, 2) = rcos?(r)cos®(2)é + %cosQ(T)cosz(z)l::. (3)

From B=V x A,
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B, = 1Z(rA;)=2cos*(z)(cos*(r) — rcos(r)sin(r)).




Magnetic Tower Simulations

Huarte-Espinoza et al 2011
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Microphysical Resistivity in AstroBEAR

In AstroBEAR, we solve the magnetic diffusion equation
in addition to the ideal MHD equations using operator splitting method.

The equation 9B =-Vx(nVxB)
ot

The diffusivity | can be derived from the Spitzer resistivity for
fully ionized plasma. In Gauss unit, it is:

1 =8.2243x10°xZ,, F(Z,, ) InAT™* (cm*/ 5)

where T is the electron temperature in eV, Zes is the effective ion
charge. The Coulomb logarithm is given by:

1.5In7—-0.5Inn—1nZ, +16.09, (T <10Z;, ev)
InA =
In7-0.5Inn+17.09, (T > lOZf”. ev)

Here, T is the same as before, n is the electron number density in the
units of per cubic centimeter.

The “F” function in the diffusivity definition can be written as:

1411987, +0.2227,,
1429667, +0.753Z2,

F(Zy)



Resistivity Implementation (Li)

Compute the induced “emf” along the four edges: x1, x2, x3, x4:

®=-nVxB

“emf” on each edge is obtained by computing the curl of magnetic field
at that edge, multiplied by the local diffusivity, which is obtained from
the edge centered temperature and electron number density. For instance,
to calculate the “emf” at edge x4, we need to first find the averaged
temperature and electron number density at x4 to calculate a local
diffusivity, then calculate the edge centered curl of magnetic field

using the available field components at face centers FO, F7, F§, F12.

Once we find the “emf” along the four edges, we can calculate the field
change by:

QE:VX@

ot

To avoid field divergence when doing AMR, it is important to keep
track of and store the edge centered “emf”.



The Current Sheet Outflows Generated by Local Magnetic Reconnection
The Current Sheet Reconnection Outflow Test
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Fig.1.a The Kinetic Energy of the Induced Outflow
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Fig.1.b The Magnetic Mach of the Induced Outflow.
The Signs Indicate the Flow Directions.

The initial setup is demonstrated by the diagram on the left.
The field points to opposite directions on the upper and lower half planes.

The temperature is initially uniform, the total pressure is in equilibrium at
We setup the computational diffusivity so that the small area surrounding the origin has slightly increased diffusivity.

the beginning.
Because of the increased diffusivity at the origin, the field at the upper and lower half planes will be bent towards the origin, creating a

reconnection spot.
The high reconnection rate at this reconnection spot converts the magnetic energy into kinetic energy and produces the observed flow pattern.



Anisotropic Heat Conduction Q = —rk|(VT),
(Li, Frank & Blackman 201 2)
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1 Heat Conduction at Thermal Interfacce
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Conclusions:

AstroBEAR 2 AMR Multi-physics
Efficient AMR parallelization
MHD
Self-Gravity, Heat Conduction
lonization Dynamics, Chemistry, Real EOS
Sink Particles

(X) Radiation Transfer
Collaboration /Training
Wiki
Open for use by other groups (UNC, Rice, LANL, Bonn)



