Magnetic Reconnection
with High-Energy Petawatt Beams
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OMEGA EP offers exciting potential for studying particle
acceleration in collisionless magnetic reconnection
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* The most interesting astrophysical environments for particle acceleration by
magnetic reconnection are collisionless, magnetically dominated, and have a
system size much larger than the ion skin depth.

* These conditions can be approached with picosecond laser-solid interactions
at intensities of more than 10'® W/cm?.

* The OMEGA EP laser facility uniquely combines two HEPW-class beam lines
capable of generating a collisionless magnetic reconnection geometry.

* A suite of high-energy particle and x-ray diagnostics exists.

Experiments on OMEGA EP could provide important data for understanding
the energized particle spectrum from collisionless magnetic reconnection.




Overview

FS @ i

* Review single-beam HEPW laser-solid interactions

- target charging
- particle acceleration without reconnection

* Magnetic reconnection with ps laser pulses

- coronal plasma conditions
- magnetic field measurements

 Example OMEGA EP experiment configuration

- target geometry
- diagnostics



Laser-driven magnetic reconnection with ns laser pulses
has been observed!®
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High-energy petawatt laser-solid interactions generate
powerful MeV electron sources
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The energetic feasibility of these schemes relies on efficient
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HEPW:-laser interactions with solid targets generate extreme
high energy density conditions over picosecond timescales
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* Laser parameters

- energy: 100-J to 2.6-kJ @ 1 pm

- pulse duration: 1- to 100-ps

- spot diameter: tens of microns

- focused intensities: >10'® W/cm?

* Targets
- mm X mm planar foils
- um to several-hundred pm thick
- various Z: CH, Al, Au

* Plasma parameters
- tenuous coronal plasma >0.05n_,
- MG to GG (?) magnetic fields
-  MeV hot electrons
- MeV proton beams
- eV to keV thermal temperatures @ solid density



Fast-electron refluxing in thin-foil targets accesses high
temperature matter at solid density
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Single-beam experiments were performed on OMEGA EP
with up to 2.1-kJ, 10-ps laser pulses
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e Laser intensities I ~ 5 x 1018 W/cm?2
e Copper-foil targets
e Target volumes:
500 x 500 x 50 um3 to 75 x 75 x 5 um3
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Proton radiography was used to study target charging
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Film pack

Primary foil
31020 um Cu

1 kJ, 10 ps

<—4-um CH tamper

<—— Proton source foil
50 um Cu

<0.75 kdJ, 10 ps

Single-shot, multiframe imaging is achieved with um-scale
spatial resolution and ps-scale temporal resolution.




Time-of-flight dispersion and a filtered stack detector
produces a multiframe imaging capability
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Many open questions exist about plasma formation and magnetic
field generation from solid targets in the HEPW regime
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*  What is the preplasma and coronal plasma density profile?
- intrinsic prepulse-driven plasma conditions?
- effect of target-Z and laser-pulse duration?
- plasma-formation with ns heater beams?

* What is the magnitude of the azimuthal grad n, X grad T, fields?
- spatial extent of the magnetic field distribution?
- temporal evolution of the magnetic field distribution?
- defines the optimum spot separation for reconnection

* Are there larger magnetic fields at the critical surface?
- 100°’s MG to GG?
- what is the magnetic field topology in this region?

These considerations reveal a large parameter
space for designing an experiment




The spatial and temporal evolution of B fields in ps laser-solid
interactions were measured using Faraday rotation
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The electron density distribution in the laser focal region was
measured with interferometry
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The temporal evolution of the maximum magnetic field

was determined
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340 — 460 MG fields have been measured at higher densities
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The OMEGA EP beams can generate collisionless magnetized
plasma plumes that will reconnect as the expand
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Primary objective
* Characterize particle acceleration from collisionless
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magnetic reconnection (VN
Laser parameters —"’mﬂgggf‘b”
* 0.1- to 2.6-kJ, 1- to 100-ps pulses, >10'® W/cm?

e >25-pm diam. spot, 10- to 100-pm spot separation +~—— (Vne)2

Plasma parameters

* Target Z: CH, Al, Au

* KT ~100 keV, L ~50 pm, L, ~10 pm, n, ~ 10!® cm-3
* Plasmaf~0.1; L/d, > 1

T e trajectory

The interaction between two high-intensity laser-produced
plasmas has not previously been studied in any regime




OMEGA EP experimental configuration

UR
FS @ LLE
RCF pack RCF pack
< >
III III
Particle Particle
spectrometer spectrometer

1013 Laser: 982 J, 10 ps
Target: 500 x 500 x 20 gm3
1012

4 MeV 6 MeV 8 MeV

0 10 20 30 40 50 60

10 MeV 14 MeV 18 MeV Proton energy (MeV)

-

o
—
ry

per MeV
o
=

-
(=)
({e]

Number of protons

-
()
(o]

Example RCF pack data Example proton spectra




A wide range of particle and x-ray diagnostics are available
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* Radiochromic film (RCF) packs — proton beam profile
* Modified RCF packs and near-target arm (NTA)

* Electron spectrometers (10°s MeV)

 Thomson parabola (10°s MeV protons)

e Optical probe: Schlieren imaging, interferometry, and polarimetry

* Thomson scattering: Z, T, flow velocity; imaging Thomson scattering
* X-ray spectrometers (> keV; time integrated and time resolved)

* X-ray crystal imagers (> keV)

* Time-integrated KB x-ray microscope (3-8 keV)
* Time-integrated x-ray pinhole cameras



Anti-parallel and co-parallel magnetic fields can be studied with
different target geometries
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OMEGA EP offers exciting potential for studying particle
acceleration in collisionless magnetic reconnection
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* The most interesting astrophysical environments for particle acceleration by
magnetic reconnection are collisionless, magnetically dominated, and have a
system size much larger than the ion skin depth.

* These conditions can be approached with picosecond laser-solid interactions
at intensities of more than 10'® W/cm?.

* The OMEGA EP laser facility uniquely combines two HEPW-class beam lines
capable of generating a collisionless magnetic reconnection geometry.

* A suite of high-energy particle and x-ray diagnostics exists.

Experiments on OMEGA EP could provide important data for understanding
the energized particle spectrum from collisionless magnetic reconnection.




