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Outline

- Magnetic reconnection
— Why does it occur so fast compared with the classical MHD theory?
- Classical MHD (magneto-hydrodynamic) analysis
— Sweet-Parker model for reconnection layer and its generalization
— Fast reconnection <=> Resistivity enhancement
- Local analysis based on two-fluid physics
— Lower collisionality = > faster reconnection
— Collision-free reconnection = > an X-shaped neutral sheet
— Hall effect and experimental verification
— ldentification of fluctuations (EM-LHDW)
- Global reconnection issues
Magnetic self-organization
— Sawtooth phenomena in tokamak
- A new scaling in transition from MHD to 2-fluid regime

= M. Yamada, R. Kulsrud, H.Ji, Rev. Mod. Phys. v.82, 603 (2010)
E. Zweibel & M. Yamada, Ann. Rev. AA, AA47-8, 291 (2009)



Magnetic Reconnection: B?=>W,
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Reconnection occurs very fast (..., << Tsp)



Magnetic Reconnection

Topological rearrangement of magnetic field lines
Magnetic energy => Kinetic energy

Key to stellar flares, coronal heating, particle acceleration, star
formation, energy loss in lab plasmas
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Reconnection in Coronal Mass Ejection
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Gamma ray flares
in Crab Nebura

Reconnection could explain
high energy gamma ray
emission from the center
of Crab Nebula (J. Arons,
R. Blandford, et al)
Uzdensky et al 2011
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Maximum particle energy in astrophysical and
laboratory systems [by K. Makishima/
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where v is the typical velocity, B is the typical magnetic field, and L is the typical system size

from K. Nakishima, "Energy hon-equipartition processes in the Universe "
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A. Local Reconnection Physics

— 1. MHD analysis
2. Two-fluid analysis




How do magnetic field line reconnect? (1)

1-D Diffusion of Magnetic Field Lines
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How do magnetic field lines reconnect? (2D)

In 2D picture, magnetic field

lines should reconnect faster

because newly reconnected

field lines move out of the

| diffusion region quickly due to
a tension force
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The Sweet-Parker 2-D Model %APP,P\
for Magnetic Reconnection

Assumptions:
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Dedicated Laboratory Experiments on

Reconnection
Device Location Start | Investigators Geometry Issues
3D-CS Russia 1970 | Syrovatskii, Frank Linear 3D, heating
LPD, LAPD | UCLA 1980 | Stenzel, Gekelman Linear Heating,
waves

TS-3/4 Tokyo 1990 | Ono, Inomoto Merging Rate, heating
MRX Princeton 1995 | Yamada, Ji Toroidal, Rate, heating,

merging scaling
SSX Swarthmore | 1996 | Brown, Grey Merging Heating
VTF MIT 1998 | Egedal Toroidal Trigger

with guide B
RSX Los Alamos | 2002 | Intrator Linear Boundary
RWX Wisconsin | 2002 | Forest Linear Boundary
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Magnetic Reconnection Experiment (MRX)




Objectives of Magnetic Reconnection Experiment %
We learn from plasmas the fundamental physics of
magnetic reconnection by generating this elementary
process in a controlled laboratory environment
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The primary issues;

- Study non-MHD effects in the reconnection layer; [two-fluid
physics, turbulence, new physics]

- How magnetic energy is converted to plasma flows and
thermal energy,

- How local reconnection determine global phenomena
- Global 2-D and 3-D MHD effects on reconnection

- Effects of boundary

-  Why does reconnection occur so fast?




Plasma Production in MRX

][]
| J J ’ { Unreconnected field lines

Probe arrays\’ |

Reconnected field lines

Flux cores

1) Gas is injected into the vacuum vessel.
2) Currents through the “flux cores” ionize plasma and drive
reconnection.



Experimental Setup and Formation of Current Sheet

2-D magnetic
probe array

quilibrium field coils
Vacuum vessel

n.=1-10 x10"3 cm3,
T.~5-15 eV,
B~100-500 G,

Experimentally measured flux evolution
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Agreement with a Generalized
Sweet-Parker Model

(Ji et al. PoP ‘99)
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Resistivity increases

as collisionality is reduced in MRX
Nu.”._h.el.i.dty |

8< e

T]/,rISpitzer

Effective resistivity

Enhanced in low

Close to classical Spitzer A
o =1.03x 107727 In A collisional plasma
-_E

E, + Vi x B, =1, n=-

But the cause of enhanced n was unknown.




Local Reconnection Physics

1. MHD analysis
— 2. Two-fluid analysis
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Descriptions of Fast Reconnection

[« 21 >
Two-fluid MHD model in which
Generalized Sweet-Parker electrons and ions decouple in
model with enhanced resistivity the diffusion region (~ c/w,).
o JxB-Vp m dV
E+VXB—77J E+VXB=T]J+ p+ e e

en e’ dr
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MRX with fine probe arrays

Linear probe arrays

will
.\
37. 5em

* Five fine structure probe arrays with resolution up to Ax=2.5
mm in radial direction are placed with separation of Az= 2-3 cm




= ~ Neutral sheet Shape in MRX

' Changes from “Rectangular S-P” type
to “Double edge X” shape as
collisionality is reduced

Rectangular shape
Collisional regime: A, <0
Slow reconnection

No Q-P field

X-type shape

Collisionless regime: Ay, > 0
Fast reconnection

Q-P field present

Yamada et al, PoP 2006



First Detection of Electron Diffusion Layer Made in MRX:
Comparison with 2D PIC Simulations

(b)  shot=58829, t=284.8 ps
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All ion-scale features reproduced; but electron-layer is 5 times thicker in
MRX P importance of 3D effects



Recent study of reconnection region in a laser plasma
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Enhanced resistivity: MRX Scaling: n* vs (c/w;)/ §, %ppp[
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A linkage between space and lab on reconnection
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MRX scaling shows a transition from the MHD to 2 fluid
regime based on (¢/w,;)/ 9,




Magnetic Reconnection in the Magnetosphere

A reconnection layer has been documented in the magnetopause
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Study of the two-fluid dynamics by plasma jogging, has started on
MRX in collaboration with MMS

Ion flow vectors are magnified by 5
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Test ground for MMS (Magnetosphere Multi-Scale mission) data analysis
With Goddard, SWI, UNH, UC-Berkeley



Summary

Good progress has been made in the research of magnetic
reconnection <= collaboration between laboratory physics and
astrophysics communities

— Transition from collisional to collisionless regime documented
— A scaling found on reconnection rate

Notable progress made for identifying causes of fast reconnection

— Two fluid MHD physics plays dominant role in the collisionless
regime. Hall effects have been verified through a quadrupole field

— Electron diffusion region identified.
— Effects of turbulence

— Causal relationship between these processes for fast reconnection
is vet to be determined

Universal principles yet to be found for mechanisms of particle
acceleration and heating and for global reconnection phenomena

— Magnetic self-organization
— Global forcing
— Impulisive reconnection



