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Reconnection Rate vs. 
Particle Acceleration

• More recent progress in understanding reconnection 
rates and basic conditions when rates are fast vs. slow. 

• Understanding the particle acceleration spectrum from 
magnetic reconnection is less  understood, and more 
difficult to measure in lab. 





Solar Flares 
• LDE Flares: hours, ~ 1028 erg/s, 104-5km, ion dominated few nonth. e-;  

• CI Flares: minutes, ~ 1028 erg/s, 103-4km, ~50% energy in nonth. e-

• Yohkoh revealed that: LDE and CI are consistent with same inverse-Y 
structure (Tsuneta, Masuda et al. 94); RHESSI, Hinode..

• Foot point and loop top (e.g. Masuda  flare)  X-rays

• CI-Thermal to 20keV;  power-laws  20-100keV and > 100keV 

• Pulsed and smooth components of non-thermal electrons

• Pulsed Component (0.1-1sec) Time delays: Low energies (E/2) lag high (E) by ~30-100ms

• Smooth Component(4-20sec)Time delays: High energies (E) lag Low  (E/2) by ~ few secs.

• Variety motivates thinking of inverse-Y reconnection as an 
acceleration environment not a single process 

• review of electron acc. in flares (Holman et al. 11, Zharkov et al. 11))



e.g.  
-direct acceleration at X-point
-slow shocks 
-shear+turbulence in downflows 
-stochastic Fermi
-cooling (e.g. Uzdensky)
-scattering inflows 
-fast shocks....

• different conditions  likely give  
different relative importance for 
various processes 

• flow driven dynamo in 
interior generates buoyant 
loops  that incur magnetic 
relaxation= magnetically 
dominated  in corona

Reconnection as an “acceleration 
environment”

(e.g. Forbes 86, Chiueh & Zweibel 
87, Romanova & Lovelace 92;  
Blackman & Field 94; Petrosian et al. 
94; Larosa et al. 96;, Shibata 95; B97; 
Tsuneta 97; Blackman Selkowitz 07; 
Uzdensky & McKinney 2011; Kowal 
et al.11; Drury ‘12)



Past Work on Reconnection Outflow Fast Shocks 

• numerical: Forbes, 1986,1988: line tied configurations, using, SHASTA, 
configuration unstable without imposed perturbation; fast shocks, but 
reconnection rate faster than Petschek; warrants revisiting for more generic 
configuration

• Flare scenarios (Shibata 95; B97 ;  Tsuneta et al 97;  Tsuneta & Naito  98;  
Blackman & Selkowitz 07; Aurass et al. 02,04; Mann et al 06)  

• analytic solutions for reconnection inflow, across slow shocks; outflow speed, 
function of inflow field angle (e.g. Blackman & Field 1994);  

• Mach numbers ≤ 2 expected (adiabatic)

• Mann et al. (2006): Used relativistic drift acceleration at a termination shock to 
explain temporal coincidence of  hard X-rays and γ-rays up to 10MeV 
(observed with  RHESSI, and INTEGRAL) and radio burst emission (from 
200-400MHz Warmouth et al. 07) via acceleration of relativistic particles at a 
fast shock in a 2003 LDE flare

•  Flare acceleration reviews by Holman et al. (2011);  Zharkova et al. (2011)



OUR SIMULATION SETUP 
• Used ATHENA (compressible MHD, 2nd order Godunov) Gardiner & 

Stone 05, public) 

• solve 2-D resistive, non-viscous  MHD; typical runs: 480 x 960 or 960x 
1920;   Lundquist numbers ~3000  (vA ~ 1.5,  Lx ~ 13, Ly~ 26, ν~0.01)

• Initial Harris sheet configuration (1-D Equilib. soln of  Vlasov-Maxwell 
eqn.) used in GEM studies (e.g. Birn et al. 2001); no line tying.  Initial β~0.2

• considered initial isothermal state subject to either isothermal or adiabatic 
state (solved energy equation for latter)

• outflow boundaries; mass/flux not resupplied 

• units :  t ~ 10 is Alfvén crossing time across inflow so t ~50 is time to lose 
about 1/2 inflow at recon rate  0.1VA 

• dense, T=0, plasma wall inserted at  11< y < 13, at t=0, or 30, or, 44;

• compared adiabatic vs. isothermal (cooling) cases, and uniform resistivity 
vs. enhanced origin resistivity cases
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compression 
ratio~6

case ν0=νamb (Sweet Parker)

cases with  ν0=10νamb 
(Petschek)

compression 
ratio ~ 2

Cooling exacerbates 
compression ratio  at  
the fast shocks



Velocity Field Magnetic Field

Shock is a Perpendicular shock



Implications and Further Work 
• Generic GEM challenge 2-D reconnecton configuration shows fast shocks with compress. ratio ~ 2;  

potentially ubiquitous feature of collisionless reconnection

• outflows only super-magnetosonic in MHD simulations for enhanced resistivity (see also Biskamp 00; 
Kulsrud 01)  at origin; insensitive to the enhancement once above factor of 3 

• Phenomenological evidence for fast shocks above loop tops in solar flares

• fast pulsed component of solar flares shows non-relativistic Energy spectrum  N(E) α E-δ with  3< 
δ < 4.5 (e.g. Bromund et al. 95) conisitent with diffusive Fermi shock acceleration (Bell 78) δ=(r
+0.5)/(r-1) for weakly compressive r <= 2 outflow fast shocks. But Fermi likely better for oblique 
shocks (e.g.  Jones & Ellison 1991; Park et al. in prep.)

• Mann et al. (2006): shock drift relativistic particle acceleration at r=2 shock to explain hard x-
rays, γ-rays and radio, using diffusive shock acceleration

• 2-D vs 3-D:  (3-D: asymmetric shear of outflow, guide field, varying obliquity? Fermi vs. Drift accel.)

•  We are studying the plasma physics of the particle acceleration and shock formation(Ren talk next!)

• Park et al. (2012): PIC sims:  Studying formation and particle acceleration at collisionless weak fast 
shocks. Importance of two-stream instability and shock-drift acceleration for strictly 
perpendicular shocks. Generalize to oblique shocks (?)

• Evidence for shocks in reconnection experiments would be interesting

• General experimental study of magnetized collisionless shocks (fast and slow mode) at LOW 
and HIGH  compression ratios;  with and without cooling is of interest
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