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Measurements of reconnection layer thickness of
in MRX can not be explained by existing
theories/simulations
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Recent analysis of Polar data support the predictions of
simulations (Scudder et al., 2012)
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Layer thickness is a “fingerprint” of the
reconnection mechanism.

We do not know the mechanism
operating in MRX
weakly collisional regimes!



Outline

Some details on the simulations and previous results

Observed fluctuations of magnetic field are not the
answer (overview of a new paper we just submitted)

Questions for the future



Fully kinetic simulations model aspects of
geometry and boundary conditions
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Choice of the scaling approach is crucial

Fully kinetic model requires that the problem parameters be
scaled. The choice of scaling is crucial since it needs to preserve
the physics of interest

Our choice: reference values of
6 Tﬂcz’ L/dz

are close to experiment

mz’/mea Wpe/wce

are treated as numerical parameters. Typical values:
(100-400) and (2-5) respectively

d; = c/wp; L :system size T :time scale for the coil
current ramp-down



Several choices are possible for the collision frequency
scaling

1) Match 1;/€ce (representative range for MRX:0.01-0.1)

Appropriate for resistive regimes since it ensures

matching of
S = —— — ~F ol _—
Dm . dz Veq d2 . dz ch

2) Match the ratio between reconnection electric field and the Driecer
field (representative range of the experiment: 0.1-0.5). This is the
relevant choice in weakly collisional regimes
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Several collisionality regimes are accessible in both the
experiment and the simulations
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Simulations reproduce the ion-scale current sheet
structure

Experiment 2D collisionless
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Ji et al, GRL (2008); Dorfman et al., Phys. Plasmas (2008); Ren et al., Phys. Plasmas (2008)
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But the observed structure of electron-scale layer can not
be reproduced in the simulations
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Anomalous transport associated with instabilities has
been considered a possible explanation

fluctuations of magnetic field close to the X-line
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Magnetic fluctuations are of interest, since they are
thought to be associated with the most relevant
instability
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spectrum of magnetic fluctuations in a Harris current sheet
with 0/pe=10; mi/me=1836; ns=0.3.
In typical current sheet, these are the only current-aligned instabilities with
significant growth rate.
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IF these instabilities reach large amplitude, they can
induce anomalous transport and broaden the layer
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2D simulation, Harris current sheet with 0/pe=10; mi/me=1836; ns=0.3
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Recent analysis: self-consistent layers are considerably more
stable compared to model 1D equilibria; the instability
becomes important only at low beta, low Ti/Te, asymmetry
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asymmetric, collisionless, open boundary simulation with mi/me=900
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Collisionality and aspects of geometry need to
be included for MRX analysis. We performed a
quantitative comparison of two simulations with
the experimental data
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Compare experimental data with two simulations :
collisionless, high-mass ratio case with open BC (m</m;=900)
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Weakly collisional simulation in MRX geometry with
mi/me=300

Long-wavelength modes survive in finite collisionality regimes
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Comparison with MRX observations reveals considerable
similarities:

collisionless weakly collisional observations
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fluctuations are characterized by lower-hybrid frequencies and
are localized near the layer center
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Characteristic direction of propagation and frequency and
wavenumber ranges are comparable
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A closer look at the spectrum

k ~ (p)!
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The effect of the fluctuations is rather minimal in the
relevant simulations
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The fluctuations with finite ky are not allowed in 2D, so such a comparison allows for a direct
assessment of the role of instabilities
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Observations show that layer thickness in the regimes
with E/Ep>1 does not depend on the fluctuation amplitude
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Crucially, the minimal layer thickness does not depend on
fluctuation amplitude
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These dependencies are inconsistent with the notion that
fluctuations set the minimum width.
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Summary

* Truly integrated study, neither simulations not
experimental observations are not sufficient by
themselves

* Magnetic fluctuations are interesting, but do not do
much

* | ayer thickness remains a problem. Factors that have
been proposed and considered:

® neutrals

* probes

* collisionality

e current-driven instabilities
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We started putting “probes” in the simulations
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Effect of probes depends on the ratio between probe
radius and layer thickness and is larger than previously
estimated
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“Corrected” measurements (preliminary)
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Simulation data as would be seen by the probes
(preliminary)
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