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Major Results on Hall Reconnection in MRX

e |ssues of particle dynamics
-Two-fluid physics
-Electron heating
- lon acceleration and heating

e Guide field reconnection
-Expectations
-Observations in MRX



Experimentally measured field line features in MRX
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e Manifestation of Hall effects in MRX
* Electrons would pull magnetic field lines with their flow




Two-fluid physics dictates reconnection layer dynamics

Sheath width ~ p,~ c/w,;
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-- Electron acceleration and

heating particularly on trapped
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/ --Parallel component enhanced
even after reconnection!
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Out of plane magnetic field is
generated during reconnection



Jogging

Simultaneous measurement of ion and electron flow vectors by plasma
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Electron flows

from Mach probe data

ITon flows
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Joggng

Both ion and electron temperature measured by plasma
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lon Acceleration

Io
-10
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Z (m)

e Clearion acceleration by the in-plane electric field.

 Asymmetry in the ion inflow is caused by asymmetry
in the upstream density.



Ion acceleration data and simulation results
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It was found that guide field slows down
reconnection notably

20 [ I l

Counter-Helicity-
Merging

I

Yamada et al, PRL 1990

Co-Helicity- |
Merging

RECONNECTION RATE yg x10° sec™

|
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COLLIDING VELOCITY v, x10° (cm/sec)

0

FIG. 5. Measured reconnection rate vs mutual colliding ve-
locity v, of two plasmas for cohelicity and counterhelicity
merging.



Sweet-Parker model was experimentally tested
and verified in high density MRX plasmas.
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H. Ji, et. al., Physics of Plasmas (1999)

Conclusion:
Sweet-Parker model is valid, but only
under certain plasma conditions (model
assumptions must be satisfied).



Null-helicity
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Now, a guide field coil has been added to MRX to study the

effects of guide field on two-fluid reconnection

| o

The guide field coil is
capable of producing

B g>B rec.

Equlibrium field coil
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Current sheet tilting

In-plane forces twist the plasma and the current sheet.




Current sheet tilting

In-plane forces twist the plasma and the current sheet.
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Current sheet tilting

In-plane forces twist the plasma and the current sheet.
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Current sheet tilting

In-plane forces twist the plasma and the current sheet.
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Previously observed by A. Frank, et. al.,
Physics Letters A. (2006); Yagi et al., 1985

Now observed in MRX
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Modified Quadrupole Field

There isn’t a simple analytic model for this, but

measurements qualitatively match two-fluid simulations
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Modified Quadrupole Field

There isn’t a simple analytic model for this, but
measurements qualitatively match two-fluid simulations
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Simulations performed by A. Bhattacharjee, B. Sullivan, and Y. Huang at UNH.
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—BT (Gauss)

Modified Quadrupole Field
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A Reduced Quadrupole Field is related to a
Reduced Reconnection Rate

A local relationship between the Reconnection Rate and the Quadrupole
Field is expected to hold:

Ohm’s law includes the two-fluid Hall term:

1
F+vxB=nJ4+—JxB
ne

A few cm from the x-point, we expect the Hall term to dominate:
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A Reduced Quadrupole Field is related to a
Reduced Reconnection Rate
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A Reduced Quadrupole Field is related to a
Reduced Reconnection Rate
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What Causes a Reduced Reconnection Rate?

Simulations show weakly reduced reconnection rate due to
interaction between Hall Currents and Guide Field.

/

On average, JxB forces
oppose the reconnection
flow, causing a reduced
reconnection rate.

Simulations typically see
rate reduced by a factor of
~2 for Bg =5 B,

Reconnection rate in
experiment is reduced
much more strongly than
this!



Guide field compression

Guide field compression can explain strong rate reduction.
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Guide field compression

Region of quadrupole @
field measurement | L
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BT magnetic pressure
pileup reduces
reconnection flow.

© © /0 ©@@O® &




Guide field compression

Pileup effects are enough to contribute significantly to
global pressure balance.
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In Summary...

We have observed four major effects of guide field on a two-
fluid plasma:

1) Current sheet tilting

2) Modified and reduced Quadrupole Field

3) Reduced reconnection rate

4) Guide field compression

Effects (1) & (2) agree with expectations based on simulations
past and present, while (3) is stronger than expected because
of (4), which is an unanticipated effect discovered by this

work.



Thank you!




