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A quadrupole pattern of the out-of-plane component of the magnetic field inside a reconnection
region is seen as an important signature of the Hall-magnetohydrodynamic regime of reconnection.
It has been first observed in numerical simulations and just recently confirmed in the Magnetic
Reconnection Experiment [Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsin,
Phys. Rev. Lett. 95, 055003 (2005)] and also seen in spacecraft observations of Earth’s
magnetosphere. In this study, the physical origin of the quadrupole field is analyzed and traced to a
current of electrons that flows along the lines in and out of the inner reconnection region to maintain
charge neutrality. The role of the quadrupole magnetic field in the overall dynamics of the
reconnection process is discussed. In addition, the bipolar poloidal electric field is estimated and its
effect on ion motions is emphasized. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2209627]

I. INTRODUCTION

Ever since it was established that the classical Sweet-
Parker reconnection model®>™* with Spitzer resistivity is too
slow and that the Petschek® fast-reconnection mechanism
cannot be realized in resistive magnetohydrodynamic
(MHD) with uniform resistivity,(’_10 theoretical studies of fast
reconnection have proceeded as a competition between two
schools of thought. The first one invokes the idea of enabling
the Petschek mechanism by a strongly localized anomalous
resistivity due to plasma microinstabilities triggered when a
certain current threshold is exceeded.” > The second, com-
monly referred to as the Hall reconnection mechanism, relies
on the two-fluid effects that become important when the re-
connection layer becomes so thin that ion and electron mo-
tions decouple from each other.”*"7 In reality, as the layer
gets thinner, the Hall term becomes more and more impor-
tant, but it is possible that the condition for anomalous resis-
tivity is reached first. If this happens, then the enhanced col-
lision rate due to fluctuations allows electrons to flow across
the field lines, instead of having to flow rapidly along them,
to preserve charge neutrality (see below). This will weaken
or remove the Hall effect on reconnection. On the other
hand, it may be that a stable two-fluid flow pattern is estab-
lished first, before the instabilities that lead to anomalous
resistivity are triggered. Then reconnection would proceed
by the Hall mechanism.

In the present study we focus on the Hall-MHD regime
of reconnection. More specifically, our main objective is to
understand the physical origin of the quadrupole pattern of
the out-of-plane magnetic field that arises inside the recon-
nection region in this regime. We shall call it “the quadrupole
field” for short. The quadrupole field is widely accepted as
one of the most important signatures of the two-fluid effects
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in the reconnection process. The reason for this is the follow-
ing. Consider the simplest two-dimensional (2D) reconnec-
tion configuration [displayed in Fig. 1(a)], with z marking the
ignorable direction, and x and y forming the so-called recon-
nection plane. Let us assume that there is no guide field, that
is, assume that the magnetic field lines above and below the
reconnection layer lie exactly in the reconnection plane
(“null-helicity” reconnection). Then, in simple resistive
MHD there is no mechanism that would produce an out-of-
plane (z) component of the magnetic field anywhere in the
reconnection region; this is basically a consequence of the
symmetries inherent in the resistive MHD equations. How-
ever, when electron and ion flows decouple from each other,
that is when two-fluid effects become important, those sym-
metries are no longer present, as charge carriers of different
sign then move differently. As a result, an out-of-plane com-
ponent of the magnetic field may develop somewhere inside
the layer. Thus, the emergence of this field is a tell-tale sign
of the transition from resistive to two-fluid (e.g., Hall) re-
gime of reconnection. For example, imagine a situation
where one studies a reconnection process in a lab with lim-
ited diagnostic capabilities, say, with only magnetic probes
but with no ability to measure plasma densities, tempera-
tures, velocities, etc. Then one is not able to determine the
ion skin depth and ion Larmor radius to compare them with
the measured reconnection layer thickness. However, a mere
detection of the z component of the magnetic field in the
layer will immediately and unambiguously reveal that one
deals with a two-fluid reconnection regime.

The presence of an out-of-plane magnetic field with a
quadrupole structure in the context of the Hall-MHD regime
of collisionless reconnection was first suggested by
Sonnerup13 (see also the work of Terasawa'® in the context of
tearing instability in the Earth magnetotail). Since then, the
quadrupole field has been observed in many numerical simu-
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lations of collisionless reconnection. It has also
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FIG. 1. The basic idea of out-of-plane field generation.

been detected in space in situ measurements by the Polar
and Cluster spacecraft flying through the Earth magnetotail
and the magnetopause.nf25 The quadrupole magnetic field
pattern has long evaded direct experimental detection in
laboratory plasma experiments but just recently has finally
been confirmed’ in the Magnetic Reconnection Experiment
(MRX).” A similar result has recently been reported in the
Swarthmore Spheromak Experiment (SSX) in a somewhat
different type of a neutral sheet.”” These experimental detec-
tions raise the need for a better theoretical understanding of
the generation mechanism for the quadrupole field, which in
our view is still lacking despite the great wealth of numerical
data.

Our article is structured as follows. In Sec. II we propose
a basic physical explanation of how an out-of-plane mag-
netic field is generated in an electron MHD (eMHD) recon-
nection layer and why it inevitably has a quadrupole pattern.
We start this section by discussing our physical assumptions
(Sec. II A); then we present a simple physical description of
the mechanism by which the quadrupole field is produced
(Sec. I B); and, finally, we illustrate our ideas by an analyti-
cal calculation of the toroidal (e.g., out-of-plane) field in the
X-point configuration (Sec. I C). In Sec. IIT we step back
from our specific example of Sec. II C and derive some gen-
eral results pertinent to stationary incompressible ideal
eMHD in 2.5 dimensions. (As dictated by convention, by
2.5D we mean a situation where all vector fields have, in
general, three spatial components but where all physical
quantities are translationally invariant in one direction).
Thus, in Sec. IIl A we establish proportionality between
three important quantities: the volume per poloidal flux com-
puted along a field line, the poloidal (e.g., in-plane) electron
stream function, and the electron contribution to the toroidal
magnetic field. In particular, we show that, as long as ion
currents are neglected in Ampere’s law and the electrons are
magnetized, the toroidal magnetic field is constant along
electron streamlines; correspondingly, the toroidal electron
velocity has to be constant along poloidal magnetic field
lines. This means at least that inside the reconnection layer,
at scales smaller than the ion inertial scale (but outside the
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inner electron dissipation region), one cannot invoke the
usual explanation for the quadrupole field as being created
by differential stretching of the poloidal field lines due to a
nonuniform toroidal electron flow. It then follows that the
toroidal field has to be generated in the transition region in
the outskirts of the reconnection layer, where the ion-current
contribution is still important. To study this process, we con-
sider the three-dimensional shape of the field lines and show
that the toroidal separation Az between a given fluid element
on a line and the tip of the line at the x=0 plane is related to
the volume per flux integral (Sec. III B). This enables us to
calculate the toroidal electron velocity (Sec. III D) and hence
estimate when (i.e., how close to the separatrix) electron in-
ertia becomes important in the generalized Ohm’s law (Sec.
III E). Finally, we argue that the toroidal velocity of the field
lines should be attributed to an E X B drift of electrons; this
requires the presence of a bipolar poloidal electric field
which we compute in Sec. III F. This electric field is also an
important signature of the two-fluid effects in reconnection;
in particular, it is responsible for accelerating ions into the
reconnection layer, resulting in an effective ion heating. We
summarize our work in Sec. IV.

Il. HOW IS THE QUADRUPOLE FIELD GENERATED
IN THE RECONNECTION REGION?

A. Physical assumptions

First, let us discuss the physical assumptions that we
adopt in this article. These assumptions are aimed at making
the problem tractable while still realistic and complex
enough to provide a useful physical picture of a reconnecting
current layer in the Hall-MHD regime. While doing this, we
pay special attention to the conditions relevant to the MRX
experiment.

We will be mostly interested in the inner structure of the
reconnection layer at scales (in the direction across the layer)
smaller than the ion collisionless skin depth defined as

c [ m
— = L. 1
W, ¢ 4 e* )

P

d;

Provided that there is some ion heating available, and in the
absence of a strong guiding field, the ion gyroradius, p;, is
comparable to d; in this region, and so ions can be regarded
as unmagnetized. Thus, their motion is not strongly affected
by the small-scale magnetic structures that characterize the
inner part of the reconnection layer considered in this article.
On these small scales, the motion of ions is slow and
smooth; the ion density then cannot develop structure on
these scales. We shall therefore treat ions as providing a neu-
tralizing background, which, for simplicity, we shall take to
be uniform. Also, for the most part, we shall assume them to
be motionless, that is we shall neglect the ion contribution to
the electric current. However, as we will show, the poloidal
ion current in the outer region of the layer actually plays an
important role in the generation of the quadrupole field.

In contrast to ions, electrons have very small gyroradii
and are well magnetized everywhere except in a small vicin-
ity of the X point. Thus, it is appropriate to use the frame-
work of Hall-MHD (or eMHD) in most of the region under
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consideration. This framework is characterized as a two-fluid
approach where the magnetic field is frozen into electrons
but not into ions. An equivalent formulation is to use a gen-
eralized Ohm’s law (i.e., electron equation of motion) that
includes the Hall term. On the other hand, as we are inter-
ested in scales that are much larger than the size of the inner
electron diffusion region, we shall, in our analysis of the
generalized Ohm’s law, neglect both the electron inertia term
(although we shall estimate its contribution in Sec. III E) and
the resistive term that arises due to normal particle-particle
collisions (i.e., classical Spitzer resistivity) or due to wave-
particle collisions (anomalous resistivity). At the same time,
we shall include the electron pressure gradient term, assum-
ing, however, that the electron pressure tensor is isotropic.
This assumption is justified if the system is not entirely col-
lisionless. That is, we assume that collisions are rare enough
for collisional resistivity to be negligible, but, at the same
time, frequent enough to restore the electron pressure isot-
ropy throughout most of the reconnection region. This is in
fact consistent with the conditions encountered in the MRX
experiment, where collisions are always present at some
level.'

Next, due to the charge neutrality condition (valid pro-
vided that the scales under consideration are still much larger
than the Debye length), the electron density has to be equal
to that of the ions. As we assume that latter to be uniform, we
require the electron density to be also uniform and hence the
electron flow to be incompressible.

Finally, we assume that the reconnection layer is in a
quasisteady state, that it has a translational symmetry in one
(z) direction, and that there is no guide magnetic field (that is
no externally imposed toroidal magnetic field).

Thus, from the previous considerations, the set of physi-
cal assumptions can be summarized as ideal incompressible
2.5D steady-state electron MHD without a guide field.

B. A simple physical picture of the quadrupole field
generation

We first describe the basic physical picture of how the
quadrupole out-of-plane magnetic field naturally arises in
electron MHD. Consider an incoming flux tube as it moves
deeper and deeper into the (ion-scale) reconnection region
toward the X point [Fig. 1(a)]. The poloidal magnetic field in
the central part of the tube near x=0 has to decrease, and
hence the volume of this central part has to expand. As elec-
trons are tightly coupled to magnetic field lines, this expan-
sion would lead to a drop in electron density. However, the
ions are not magnetized and their density does not decrease.
Therefore, as almost perfect charge neutrality is to be main-
tained, a very small poloidal electric field arises and it im-
mediately pulls the electrons along the field lines inward
from the outer parts of the flux tube into this central region.
Owing to the very large mobility of electrons along the field
(inversely proportional to m,), this parallel electric field is
negligibly small.

As a result, we get a strong inflow of electrons along the
poloidal magnetic field in the upstream region [Fig. 1(b)].
This inflow rapidly accelerates as the field line approaches
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FIG. 2. Simple X-point configuration.

the separatrix, because of the rapidly increasing rate of flux-
tube expansion near the X point. In the downstream region,
the direction of the electron flow reverses: as a newly recon-
nected field line moves away from the X point, the volume
of its central part decreases and so the electrons are squeezed
out and flow rapidly outward along the field [Fig. 1(c)]. As
the field line moves further away, this outflow gradually de-
celerates. The resulting overall picture of the electron flow is
shown in Fig. 1(c); once again, the main feature is the rapid
parallel inflow of electrons just above the separatrix followed
by a rapid outflow just below the separatrix.

This pattern of electron motion plays an important role
in eMHD reconnection, as there is a poloidal electric current
associated with the flow of electrons. By Ampere’s law, this
current generates a quadrupole toroidal magnetic field con-
centrated along the separatrix [see Fig. 1(d)]. This is our
picture for the origin of the quadrupole field.

The orientation of this field is always such that the tor-
oidal field in the upper right and lower left quadrants is di-
rected away from the viewer, whereas the toroidal field in the
lower right and the upper left quadrants is directed toward
the viewer. It is interesting to note that this orientation is
universal, i.e., independent of the direction of the poloidal
field.

C. An analytical example: A simple X-point
configuration

To illustrate this mechanism, we present a very simple
calculation of the toroidal field based on the simplest pos-
sible poloidal field configuration relevant to the reconnection
problem. This configuration is of course the X-point configu-
ration that we now describe.

Consider the central part of a reconnecting current layer.
Let L be the half-width and 6<L be the half-thickness of the
layer. Let us choose a Cartesian coordinate system (x,y,z)
with x being the direction along the layer, y across the layer,
and z in the ignorable direction. We shall refer to the plane of
reconnecting field (i.e., the xy plane) as the poloidal plane
and the z direction as the toroidal direction. We set the origin
x=0=y exactly at the X point and assume mirror symmetry
with respect to the xz and yz planes as well as the transla-
tional symmetry in the z direction (see Fig. 2). We also as-
sume steady state.

We are interested in a small vicinity of the X point,
which means that we consider locations with x<<L and y
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<< 0. In this region the poloidal magnetic field can be generi-
cally represented by a simple X point configuration. In terms
of the poloidal flux function W(x,y,¢) this can be written in
the appropriate gauge as

2
V(x,y,t) = —cEt+L5(— x_>’ (2)

2 \& L
with B, =V XZ.

This expression serves as the definition of the scales L
and 6. The first term in this expression is just the instanta-
neous value of the flux at the origin (which we can define as
the flux that has reconnected as t=0). As reconnection pro-
ceeds, it increases at a constant rate equal to —cE_ =|cE,
>0, where E,<0 is the toroidal electric field (which is uni-
form in steady state reconnection). The quantity B, repre-
sents the reconnecting magnetic field just outside the layer:
B,(x=0,y=06)=B,. The poloidal magnetic field components
corresponding to this flux function are:

Bx= (9},\I}=B0X, (3)
o
ox
B, = - ¥=By——. 4
07 @)

For convenience, we introduce dimensionless variables
by rescaling x, y, B, ¥, and E, as

==X -_Y
U7
)

- B v - CE,
B=—, ¥=—/ E=

B, Byo ByS
Then Eq. (2) can be written as
_ _ _ _ )—]2 )?2
\I"E\I’+Et=\I’(x,y)—\I’(0,0)=3—5. (6)

Correspondingly, the shape of a given field line W is
given (in the two upper quadrants) by

y(& W) =20 + 2. (7)

Now we want to calculate the motion of the electron
fluid. It is completely determined by two conditions: flux-
freezing in the poloidal plane (which is not spoiled by the
pressure gradient term in the generalized Ohm’s law, as we
shall discuss later) and incompressibility. In order to get an
explicit expression for the electron velocity, let us consider
the trajectory X(z), Y(r) of an electron fluid element. As it
moves through the layer, the given fluid element always

stays on a field line with constant \I_’; thus, as one follows its
motion, W' =W +Er varies with time. Correspondingly, the
trajectory of the element has to satisfy

Y(1) = V2(¥ + Et) + X2(2). (8)

Next, the incompressibility condition implies that
the volume per unit flux following an electron fluid element,

V(X,9')=V[X(t),V+Ef], has to be conserved. Here,
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V(X,W') is measured along the line W' from the y-axis
(x=0) in the case of a field line in the upstream region (and
from the x-axis, y=0, in the case of a field line in the down-
stream region), up to the fluid element under consideration.
For example, in the upstream region we thus have

1(X)
dl
VIX(0),¥']= f
0 |Bpol|

fx(t) dx
- 0 |Bx|

Using expressions (3) for B, and (7) for the field line

W=const

= const. 9)

W=const

shape y(x, ¥), we get

VX)) = 5| R
|y(x,\I’)| W=const
=£log X(1) + VX2(1) + 2W' (1)
Bo V2 (1)
= const. (10)

Hence, he [X(1)

trajectory is  given b
+\VX2(1)+29’ ]/ V2W' =const, that is X(£)/\2¥'()=const.

Using (8), we also get a similar expression for Y(r). Thus,

X(Xo,1) = &Xo, W)\ 2| W + Ei|, (11)
Y (X, 1) = 7(Xo, W) V2|V + Et], (12)

where 7= \,'@, and where we take “+” in the upstream
region and “—" in the downstream region. The constant pa-
rameters & and 7 represent the initial position of the electron
fluid element at r=0.

Differentiating these expressions with respect to time

and using dW' /dr=E, we obtain the electron velocity field at
any point (X,7):

(e) _ __=
(x)’) 211, ()7}7)_ xy2—f2’ (13)

Ty
)

1
1]

59T =2 =
5 (6,y) = ij(xy) o - (14)

Notice that v, v )1 v = )7/)?, so electrons flow along purely
radial lines, 1nward in the upstream region and then outward
in the downstream region. Even though all the streamlines
converge to the X point in the upstream region (and fan out
of the X point in the downstream region) the motion is in-
compressible as the magnitude of the velocity diverges near
the origin. Also note that if the above-mentioned velocity
field holds, electrons never actually cross the separatrix; they
all go through the X point. This is of course an artifact of our
ideal eMHD assumption.

This poloidal electron velocity field results in a poloidal
electric current:

i(e) _

5 =—enyi=—en,Lvs, (15)
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j_s,“) =—enuy=—en,ovs. (16)
This current in turn produces a toroidal magnetic field. Ac-
cording to Ampere’s law we have

am ) 4mne - X
o=

B =—j LIE|— , (17)
¢ ¢ 27 (%,5)
4 4an,e | — y
BO=- "0 T g Y (18)
c 20 (%,7)

We can thus compute the resulting toroidal field by inte-
grating either of these equations while taking into account
that B,(0,y)=0=B.(x,0) because of symmetry. In the up-
stream region it is convenient to integrate ﬁxBie)(x, y) with
respect to x at constant y starting with x=0. (In the down-
stream region, it is convenient to do the opposite.) Thus we
can write:

X
@@y>@=fL@&ﬁ
0

drne - (Y dx
AT By | — S (19)
¢

Using expression (6) for W' (X,y), we get

L 1 V+X
B.(x,y)=— EBOQ log| ——|, (20)
y—X
where we define a dimensionless constant
4mne - O L -
Q= ———6L|E[=——~|E]. (21)
CBO di VA

Expression (20) is actually valid in both the upstream and
downstream regions. We note that a very similar expression
was obtained, in the eMHD framework, in Ref. 15.

We can rewrite the coefficient Q in a different form by

expressing the reconnection electric field E in terms of the
other parameters of the reconnection region. Indeed, let v .,
be the reconnection velocity, v,.=-v,(x=0,y=45). Then

|E,|=v,e.By/c and hence |E|=v,../ 5. Then, we get
O0=——""=C—, (22)

where u is the velocity of the flow out of the layer, and where
we define a new dimensionless parameter C:

= _ o). (23)
ou
Because of the condition of overall mass conservation we
expect C to be of order unity.

Usually, one expects the thickness & of a Hall-MHD re-
connection region to be comparable to the ion collisionless
skin depth d; and the outflow velocity u to be of order V.
Thus, Eq. (22) tells us that the proportionality coefficient Q
is, generally speaking, expected to be of order unity. In prac-
tice, however, Q may significantly deviate from unity for any

Phys. Plasmas 13, 062305 (2006)

specific physical system. For example, in the MRX experi-
ment one often encounters 6=d,;/3 and u<<V,, so Q can be
smaller than 1/3.

The reader should be warned that formula (20) only ap-
plies to our specific example for the poloidal field, Eq. (2),
and may not be applicable to various configurations realized
in some numerical simulations and in the MRX. We chose
this specific example because of its simplicity and clarity and
we leave more complicated poloidal field structures for a
future study. We believe that the most physically relevant
among these other structures is a configuration with an inner
electron current sheet (electron dissipation region) of a finite
width in the x direction.

As we see from Eq. (20), in the simple X-point configu-
ration considered in this section, the assumptions of ideal
eMHD lead to a logarithmic divergence of B, at the separa-
trix y=X. Later, in Sec. IIl E we shall discuss how this sin-
gularity is removed by including finite electron inertia. We
also see that B, in our solution is constant along straight
radial rays y=const(x). In reality we expect electron inertia
and other nonideal effects to intervene and break this ideal-
ized picture near the separatrix. However, we believe that the
main tendency for the constant-B, contours to be strongly
elongated along the separatrix will survive. In fact, this over-
all behavior is in a very good agreement with the results of

15,16,19-22

numerical simulations, and is also consistent with

the experimental data.'

lll. STATIONARY IDEAL INCOMPRESSIBLE eMHD
IN 2.5 DIMENSIONS: GENERAL RESULTS

In this section we step back from the particular example
of the previous section and derive several general results that
are valid in steady-state 2D incompressible eMHD for an
arbitrary poloidal field structure.

A. General relationships between toroidal magnetic
field, electron stream function and the volume
per flux in eMHD

First we introduce three important functions: the
volume-per-flux integral V(x, W), the electron stream func-
tion ®,, and the (electron contribution to) the toroidal mag-
netic field B,. We derive important relationships between
these functions and discuss their implications.

The volume-per-flux integral V(x, W) is defined (in the
upstream region), as in the last section, by

mezfxﬂ-=fxﬂﬁ : (24)
0 |B| v 0 |Bp01| v

where, in the last expression, the integration is performed
along a given poloidal line, ¥, from the y axis (x=0) to the
given point (x,W). A similar expression can be defined in the
downstream region.

The electron stream function ®,(x,y) is defined, for an
incompressible flow, V-v(©'=0, by the poloidal electron ve-
locity as
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v =[V X (@,2)]=[Vd, x 2]. (25)

For definiteness, we choose the streamline corresponding to
zero ®, to coincide with the line from which we count the
volume-per-flux, i.e., with the y axis: ®,(0,y)=0.

With these definitions we now show that in steady state
ideal incompressible electron MHD the two functions are
just proportional to each other:

(I)e(x’y) == CEZV(X,)’), (26)

where E_ is the uniform electric field in the z direction.

To prove this, let us consider the variation of ®, along
the poloidal magnetic field and show that it is proportional to
that of V. Consider two points lying close to each other on
the same poloidal field line W, and let Al be the infinitesi-
mal separation between these two points along the poloidal
field. From Eq. (24), the difference between the volume-per-
flux of these two points is

AV= Al (27)

Bpol

On the other hand, the difference between the values of
the electron stream function at these two points can be ex-
pressed in terms of the perpendicular component of the po-
loidal electron velocity

AD

v | =[VD, X 2] A% [by X %] A
= e 2L =77 Ppa X 2l=— "= ’
pol. - Alpol b Alpoprol
(28)
where b, is the unit vector along the poloidal magnetic

field. On the other hand, V;i)l , can be deduced from the
generalized Ohm’s law. Neglecting resistive and inertial
terms and taking into account that d_p,=0, the toroidal com-

ponent of this law can be written as
CE12 + [véeo)l,i X Bpol] =0. (29)

By taking the vector product of this equation with B, we
get

o EZXBy

E, E,
Vi1 = CTL =cp (X bpl=c= V. (30)

pol pol pol

Comparing Egs. (28) and (30) we immediately see that

E
AD,=- AL, (31)
B
pol
which, together with Eq. (27), gives
AD,=—cEAV. (32)

Because we choose to count the volume-per-flux from
the ®,=0 electron streamline, then, summing this equation
along each field line, we get Eq. (26), as desired. But we can
actually proceed more directly. Let us consider the variations
of @, and V across the poloidal field. For this, consider a
single poloidal field line ¥ at two neighboring moments of
time, #; and r,=t;+At. Consider a certain point A; on the
field line at r=¢; and see it E X B drift with the field line to a
new location A, at r=t,. The corresponding change in the
volume-per-flux is due to the plasma that has flowed in along
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the poloidal field past this point during the time Af:
IRTAYS
AV = V(A,) - V(A,) = — 2220 (33)
Bpol

At the same time, this parallel inflow of the plasma results in
a change in @, between points A, and A,:

A(be = (be(AZ) - (be(Al) = vpol,\I(ASpol,J_ : [ZA X bpol])7
(34)

where the poloidal displacement vector As, ; in the direc-
tion perpendicular to the poloidal magnetic field is given by
the E X B drift:

ck,

ASpOl,L = Vl,polAt: At [2 X bpol]' (35)
pol
Thus, we get
E
A(bg = va],HAtQ7 (36)
Bpol

and comparing this result with Eq. (33), we again see that
AD,=-cEAV. (37)

A similar derivation also holds in the downstream region.

Thus we have shown that the variation of the electron
stream function @, in both parallel and perpendicular direc-
tions is equal to —cE, times the corresponding variation in
the volume per flux integral V. Using the convention of
counting both ®, and V starting from the y axis, we again
arrive at the relationship (26).

The second important relationship is the proportionality
between the electron stream function @, and the electron
contribution to the toroidal field B,. This well-known rela-
tionship follows immediately from Ampere’s law and the
reflection symmetry conditions [B.(x=0,y)=0=®,(x=0,y)
upstream and B.(x,y=0)=0=®,(x,y=0) downstream]. It
reads:

Bz(-x’y) =_D(I)e(xvy)’ (38)
with the coefficient D given by

4mme N4mp By
c B di - diVA ’

D

(39)

(Here B is an arbitrary normalization field used in the defi-
nition of V,.)

Note that the coefficient D defined by Eq. (39) is con-
stant for the case of uniform density considered here. If the
density were not uniform, we would get a similar result
B,~ @, if the electron density is incorporated into @, i.e., if
®, is defined by n,vi)=[V X (®,%)]. Similarly, Eq. (26)
would be valid if V is understood as the number of electrons
per unit flux, instead of the volume-per-flux.

Combining Egs. (38) and (26) we immediately see that

B.=cDE,V. (40)

This result is important because it shows how, in eMHD, one
can immediately determine B, once the poloidal field struc-
ture is known, without having to solve any partial differential
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equations. One just has to compute the volume-per-flux inte-
gral given by Eq. (24) upstream and the corresponding ex-
pression downstream, and the toroidal field will be just the
constant ¢cDE_ times it.

Already by itself, the simple relationship (38) is impor-
tant, because it means that, neglecting ion currents, the tor-
oidal field is constant along the poloidal electron streamlines;
its value is simply transported in space by the poloidal elec-
tron flow:

(v\) - V)B, == DB([V®, X £] - Vd, =0, (41)

where V;';)I is the total poloidal electron velocity including the

parallel flow.

This result suggests that the toroidal magnetic field can-
not be created locally, in the inner part of the reconnection
region (where ion current is insignificant); instead, it has to
be brought into this region by the convergent electron flow.
The toroidal field thus has to be generated in the outer parts
of the layer, where the ion-current contribution to B, is not
negligible. We discuss this generation process in Sec. III C.

In addition, as long as electrons are completely frozen
into the magnetic field, the evolution equation for the toroi-
dal magnetic field, i.e., the toroidal component of the mag-
netic induction equation, tells us that

V- VB, =B, Vol (42)

in a steady state. Therefore, as the left-hand side (lhs) of this
equality is zero, as we have just shown, the right-hand side
(rhs) is also zero. That is, the toroidal electron velocity and
hence the toroidal current density jz=—enevie) are uniform
along poloidal field lines as long as one can neglect the ion
current. As from Ampere’s law the toroidal current density is
simply proportional to the Laplacian of W, we see that in
order to get a consistent solution, one cannot pick the poloi-
dal flux function arbitrarily; one has to impose the condition
that V2W=F(W). For example, the simple X-point poloidal
field configuration considered in Sec. II C trivially satisfies
this condition with F(W)= const.

The previous observation also means that within the pure
eMHD framework with no ion currents one cannot really
apply the well-known conventional explanation, first intro-
duced in Ref. 14, of how the quadrupole field is generated.
By itself, this argument does not rely on neglecting ion cur-
rents. Instead it relies on the fact that the magnetic field is
completely frozen into the electron fluid. The toroidal field is
then viewed as being produced from the poloidal magnetic
field as a result of the differential stretching in the toroidal
direction by the electron flow. This argument thus ap-
proaches the generation of the quadrupole field from a dif-
ferent angle: it presents the point of view of the ideal eMHD
Ohm’s law (with the Hall term), instead of using Ampere’s
law. It basically goes like this: as a field line is advected into
the reconnection layer, the electrons on it start to move tor-
oidally (to carry some of the reconnection current) and they
do it differentially, moving faster on the central piece of the
field line. As the magnetic field is frozen into the electron
fluid, the field line bends out of the reconnection plane, re-
sulting in the quadrupole pattern of the toroidal field. This
line of thought is actually quantified by Eq. (41). That is, the
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toroidal field is created by the stretching due to the nonuni-
formity of vie) along a poloidal field line (rhs) and is ad-
vected with the poloidal electron flow (lhs). But, as we have
just seen, as long as one neglects ion currents, this equation
becomes simply 0=0. Thus, in order to understand toroidal
field generation, one first needs to take ion currents into ac-
count (see Sec. III C for more discussion).

B. The shape of field lines in the xz plane

A complimentary way to look at the problem of the tor-
oidal field generation is to analyze the shape of a field line
projected on the xz plane, and see how it changes as the field
lines move deeper into the layer. Let this shape be repre-
sented by the function z(x, V), which is given by

dz) _B. (43)
dx R Bx‘

By integrating this along a field line we obtain:

Az(x, ) = z(x, V) — z(0,P)

* dx
= | B.(x,V) . (44)
J70 : Bx('x’\l,) W=const
Using Egs. (40) and (24), we then have
V2(x, W
Az(x,W)=cDE, (z ). (45)

Note that the volume per flux is conserved by the motion
of the electron fluid; this means that the x position of an
electron fluid element that stays on some constant-W field
line changes with time in such a way as to keep V(x, V)
constant. Thus, if one follows a specific fluid element on a
given moving field line W, one finds that the toroidal dis-
tance Az(x, W) between this element and the point where the
field line intersects the x=0 plane does not change with time.
On the other hand, as we showed in Sec. II B, the fluid ele-
ment moves along the poloidal magnetic field toward the y
axis, and so its x coordinate decreases. Therefore, the shape
of the field line, which can be characterized by the function
x(Az), changes with time. Interestingly, this change is not
due to the differential toroidal stretching, as it is usually
assumed, but is simply due to the fact that the two mirror-
symmetric parts of the line are squeezed together by the con-
verging poloidal flow.

C. The role of ion currents in the generation
of the quadrupole field

As we saw in Sec. III A, when the current due to the ions
is neglected, the toroidal field is conserved along the electron
streamlines and hence cannot be locally generated in the in-
ner part of the reconnection layer. This indicates that, in or-
der to explain how and where the toroidal field is generated,
one has to bring the ions back into the picture. Deep inside
the reconnection region, at x<<L and y << §~ d;, the poloidal
ion currents are indeed negligible and the previous picture
applies. On the other hand, in the upstream region well out-
side of the reconnection layer (i.e., for y> §), ideal one-fluid
MHD works well. In this region the electrons do move po-
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loidally toward the reconnection layer with the E X B veloc-
ity and the associated electron current would generate the
toroidal field; however, the ions also move happily in the
same direction and with the same speed. As a result, the
ion-current contribution to the toroidal field exactly cancels
that of the electrons. Thus, the net toroidal field is zero in this
region. From this we see that, in order to understand where
the quadrupole toroidal field comes from, one has to look at
the outskirts of the reconnection layer, where the ions be-
come partly decoupled from the electrons, so that 0<| j;’)|
<[it7).

We can discuss the toroidal field generation from a dif-
ferent point of view, in terms of the shape z(x, V) of a given
field line W as it is carried into the current layer by the
electron flow. Far upstream, this field line lies entirely in the
reconnection (x,y) plane, but as it moves into the reconnec-
tion region, it gradually starts to bend out of this plane. The
toroidal electron velocity can be nonuniform along the line
only in this transition region of nonzero ion current. Corre-
spondingly, toroidal field is produced inside this region; sub-
sequently, deeper inside the reconnection layer, the toroidal
electron velocity becomes uniform along the line and hence
the toroidal elongation freezes. Any further lengthening of
the field line in the toroidal direction can be directly attrib-
uted to the “injection” of new segments of the field line in
the transition region.

D. Toroidal electron velocity

To illustrate this picture, let us consider an extremely
simplified model where the transition region is a razor-thin
line y=4. In this example, the electrons and ions move to-
gether above y=4 and so B,(x,y>6)=0. Below this sharp
boundary, we shall regard the ions as poloidally motionless,
so that jlg’gl(y< 8)=0 and hence the pure eMHD picture de-
veloped 1n the preceding sections applies. In addition, in this
and in the next section we shall, for simplicity, neglect the
toroidal component of the diamagnetic electron flow that re-
sults from poloidal electron pressure gradient.

Now let us consider a given field line V'; as we follow its
motion through the layer, the magnetic flux W' between the
separatrix and the given field line changes linearly in time
according to W'(r)=W+cE.t. Denote the x coordinate of
the point where this field line intersects the boundary y=3J
by x{ V' (1)]=xs(WV+cE.t). For example, in the simple
X-point configuration considered in Sec. II C, we have
Xs=[1-2W'(r)]"2. Next, because there is no toroidal field
above y=9, we can set z=0 everywhere along this boundary,
i.e., z[xs(W'),W]=0. Then, using Eq. (45), we can express
the toroidal coordinate of any fluid element (X(¢),¥) on a
given line W as

Z[X(1), W] = Az[X (1), W] - Az[xs(W'), V]

2 2 ’
o) [X(;),qu] - Vi)

(46)

where
Vs(W') = Vixs(W' (1), ¥]. (47)
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In this section we are interested in the toroidal electron
velocity, so let us see how z(X, V) changes with time follow-
ing an electron fluid element. To do this, differentiate Eq.
(46) with respect to time. When doing this we have to take
into account that in ideal incompressible electron MHD the
motion X(¢) of a given fluid element is constrained by the
condition that V[X(¢), W] remains constant. Then we have

2 '
vge)[X(t),\If] = %Z[X(t),\lf] - CDEZ%{ Va(;I’ )]

__CZDEZL{M}
= 5 ,

(48)

as d¥V'/dt=cE.. Thus, the velocity is proportional to the flux
derivative of the square of a flux tube’s entire volume up to
the boundary y= 4.

One sees that the toroidal velocity is constant along field
lines but, in general, varies from line to line. In particular, the
volume-per-flux V4(W') grows rapidly near the separatrix
and so vie) becomes very large there. This appears to be
inconsistent, for instance, with the simple X-point configu-
ration considered in Sec. II C; indeed, the particular form of
the poloidal flux function in that example corresponded to a
flat toroidal current profile, j_ =const, and hence vie)zconst.
The way to resolve this discrepancy is to note that the sharp
rise in the toroidal current density that corresponds to Eq.
(48), leads to only a relatively small change in the poloidal
field structure. Moreover, this change is actually consistent
with that expected from the backreaction of the toroidal mag-
netic field pressure. This backreaction arises because, as one
approaches the separatrix, the toroidal field increases sharply
and starts to play an important dynamical role. In particular,
it modifies the poloidal field structure through the vertical
pressure balance condition; the poloidal field decreases near
the separatrix and this leads (by Ampere’s law) to an addi-
tional electric current, strongly concentrated near the separa-
trix. We can estimate this additional electric current as fol-
lows.

Let us write the vertical pressure balance as

BZ

Pol+B§=B(2)_ 87P =BGy’ (49)

where we have assumed (from here through the rest of this
subsection) that the total plasma pressure P has a parabolic
profile: 8P=B%(1-77). If we neglect the toroidal field pres-
sure term in this equation, we then recover our original po-
loidal field profile B, =~ B,=B,y, which corresponds to uni-
form toroidal current. Note, however, that even if B, itself is
small, its rate of change may become important near the
separatrix, so that the corresponding small but rapid change
in B, results in a large contribution to the toroidal current.
Indeed, differentiating Eq. (49) with respect to y, we get

dB? dB 8 dB*
Zeod _gp o 2Tp 5 = 2By - =, (50)
dy dy c dy

Then, using Egs. (3) and (40), we find
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B J [ VA(x, ¥’
jz:_i _0_C2D2E§ ,< ( ))
‘ 4| 6 g 2
J | V(x, ")
212 ’
= DE.— s 51
neecDE;— [ 5 (51)

and so, assuming that the additional toroidal current is pre-
dominantly carried by electrons,

a | V(x, v’
o = - ZDEme,[ (x2 )], (52)

an expression that is very similar, although not quite the
same, as Eq. (48).

Finally, for reference, let us give expressions for Vs(W’)
and vEe) that correspond to the simple X-point configuration
considered in Sec. II C. First, according to Eq. (10), we have

_ L 1+ V1-2v’
Vs(¥')=—log| —F—
BO 2\1_,1
L 1+x5W'
R E b L (53)
2B, 1 —-x4W")
so that (d/d¥")Vs¥')=—(L/2B,W'x¥’) .
Then, from Eq. (48) we obtain
(€) (aTp! -2 T d T
v (W') == BySD|EPVA¥') —V¥')
av’
L?sD  |E] 1+ x5’
_vo_|B w|
2By 2 5 5(T") 1-x4P)
Finally, using definition (21), we can write this as
_ LO|E 1+x5(WP’
() = —EL g | LERAT) (55)

45T | 1-x40)

E. Finite electron-inertia effects

We can use the previous formula for v to estimate

when the electron inertial term stops being nezgligible in the
toroidal component of the electron equation of motion. From
that moment on, the finite electron inertia will be large
enough to balance part of the toroidal electric field, and thus,
the electrons will no longer have a pure E X B velocity and
will no longer follow the field lines exactly. The inertial term
(for a single electron) can be written as

dv(e)

v (6)~ ,
my(v+ V)v, g

(vpol L V)U =m (Vpol 1 A )

where we take into account that v( ¢ is constant along field
lines and so is a function of ¥’ only Using expression (30)
for vy, |, we get

dv (6)

m,(v - V)v(e) ~m,cE

. 57
zd‘l” 57)

Then, using (48), we get

Phys. Plasmas 13, 062305 (2006)

&> | VY
m,(v+ V)vie) ~ — mec3E§D—[ ﬁ( )} . (58)

z d(q,l)Z 2

We can no longer neglect electron inertia when this term
becomes comparable to the toroidal electric force on an elec-
tron, —eE,. We estimate this to happen for values of W' of
order of W, which is obtained as the solution of the equation

2¢ 1 1 1
m,cD czEg -

[Vi(¥")]" = (59)

2mmn,m, czEfl

We can apply this estimate to our simple X-point
example, for which Vg W¥’) is given by (53). As
we expect the electron inertia to become important only near
V’'<1, we can approximately write
—(L/2By)log W', and then

the separatrix,
VW')=

(6)2_1 _log\I_”.

(60)

The inertial term in the toroidal component of Ohm’s law is
then estimated, with the help of Eq. (57), as
—dv (e) _,log ¥’
(v VYo' = m,E— ~ —m,QLIEP~2—,  (61)
dv’ 492

where we recall that E<0 in our solution. After some ma-
nipulation we can write the condition on W, as

{1 e

where we use Eq. (22) and define d,=c/®,,. Thus,

2@‘; Lvrec
V|log \T’L| mi 8V

W~/ —~log —. (63)
m; m,
When traced to the y axis, this critical field line corre-
sponds to a distance

[
y«~|—lo
m;
from the X point. (This is of order /4 for hydrogen plasma).
It is essentially (apart from the logarithmic factor) of the
same order as the distance at which electrons become de-

magnetized, i.e., comparable to the size of electron figure-
eight and betatron orbits.

N\ 1/4
g&> P (64)
m@

F. The bipolar poloidal electric field

Why do field lines move in the toroidal direction as they
enter the layer? To answer this question, we need to consider
the toroidal projection of the perpendicular (to the total mag-
netic field) electron velocity, v, .. Let us locally introduce a
rotated orthonormal coordinate system (x’,y’,z), where x’ is
the direction along the poloidal magnetic field and y’ is the
direction in the poloidal plane which is perpendicular to the
poloidal magnetic field. Taking into account the electron
pressure (which we assume isotropic) but neglecting the
electron inertia, we can express v(f?z as
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FIG. 3. Bipolar poloidal electric field.

(e) _ [Epol X Bpol]z [Vpol(pe/nee) X Bpol]z
v, ,=¢ B2 +c B2
Ey’Bpol (?yr(pe/nee)Bpol
=—C B2 —C B2 . (65)

This is a sum of two drifts: the E X B drift due to the poloidal
electric field £, and the diamagnetic drift due to the electron
pressure gradient. In principle, as long as the electron pres-
sure is isotropic, these two terms can be combined by notic-
ing that in a steady state the poloidal electric field is electro-

static, E,, ==V ¢,(x,y), and defining é,= ¢,—p,/n,e. Then,

(dy1$2) By
p© = -2 P2l

66
1.z B ( )

However, an important point is that the diamagnetic drift
is actually irrelevant, as far as the motion of field lines is
concerned. In the presence of the pressure gradient, the field
line velocity in fact differs from the electron perpendicular
velocity and is given by just the E X B velocity. Its z com-
ponent is

Ey By
BZ

vp,=—¢ (67)

Thus, the field lines move toroidally because of E, that
has a bipolar structure (see Fig. 3). The above-mentioned
argument suggests that, instead of saying that electrons pull
the field lines in the toroidal direction in two-fluid reconnec-
tion, it is, in a sense, better to say that it is the magnetic field
lines that start moving toroidally and pull the electrons with
them. The poloidal electric field can therefore be viewed,
similarly to the quadrupole toroidal magnetic field, as an
important signature of Hall reconnection. It has in fact been
detected with the Polar spacecraft in the magnetopause,23
with the Cluster spacecraft in reconnection regions in the
Earth magnetotail24’25 and in the SSX experiment;27 it has
also been seen in numerical simulations.'”*?" It is this elec-
tric field that pulls ions into the reconnection layer; as they
move across the layer, they pick up the elecrostatic potential
difference of the order of OE, . This potential difference is
large enough to accelerate jons (in the y direction) up to
about Alfvén speed. As a result, the ion vy distribution at the
center of the reconnection layer is well represented by two
counter-streaming beams, which agrees both with numerical
particle simulations' " and with spacecraft measurements.”*
Effectively, this process can be interpreted as a strong ion
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heating, providing the pressure support for the layer. In ad-
dition, ion collisions (with particles or with waves) may
quickly isotropize the ion distribution function, leading to a
true ion heating. The quadrupole toroidal magnetic field also
plays an important role in the poloidal ion motion; in par-
ticular, as the ions are accelerated into the layer, the Lorentz
force due to this field bends ion trajectories in the x direction
and thus leads to the ejection of ions out of the reconnection
region.

For reference, we give an expression for the bipolar elec-
tric field for our simple X-point configuration example. To
derive this expression, we make use of the toroidal electron
velocity vie), computed in Sec. III D.

First, from the y’ component of the ideal eMHD Ohm’s
law, we can write (neglecting electron pressure)

CEy’ =- Uge)er + Uig,)BZ == Uge)Bpol + vpol,I\Bz
=" Bpol(vf) —-\B), (68)

where we express v, = Uy 8 ABp as it is done in Appen-
dix A. In the case of the simple X-point configuration of Sec.
I C, we have at our disposal explicit expressions for all the
ingredients that enter the previous equation. Thus, B is
approximately equal to B, given by Eq. (3); vie) is given by
Eq. (55), \ by (A10), and B, by (20). Putting it all together,
we obtain

L 0, L1 y 1+x5VP")
Ey'(x’y)=_E|Ez|?s — — _
20 \x4(F') 1-x5P')
_¥log|1EE (69)
y—x

We see that, because of the L/ factor, this poloidal field can
be considerably larger than the toroidal electric field.

IV. CONCLUSIONS

In this article we have investigated the structure of a
reconnection layer in the Hall-MHD regime, in which elec-
trons are well-magnetized inside the layer, whereas ions are
not. Specifically, we have addressed the issue of how the
quadrupole pattern of an out-of-plane (toroidal) magnetic
field is generated inside a Hall-MHD reconnection region.
This quadrupole pattern is commonly seen as an important
feature of two-fluid physics that is at work in the reconnec-
tion process whenever the resistivity is small. It has been
routinely observed both in numerical simulations and in
space, and has recently been confirmed in a dedicated labo-
ratory e:xpe:riment.1 In our view, this quadrupole pattern
arises most naturally via the following mechanism.

Let us follow a flux tube as it enters the reconnection
layer from the upstream region. As it moves deeper into the
layer, the in-the-plane (poloidal) field in the central part of
the tube weakens and so its cross-sectional area expands.
This does not affect the ions very much. Let us assume that
their density is constant throughout the inner part of the re-
connection layer. Then, owing to charge neutrality, the elec-
tron density also has to be constant. Therefore, as the central
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part of the flux tube is expanding, electrons have to flow in
into the layer along the poloidal magnetic field. Similarly, in
the region downstream of the X point, the flux tube is leav-
ing the layer and so its cross-sectional area contracts. The
electrons then are forced to flow along the poloidal field out
of the layer. We thus obtain a circulating pattern of the elec-
tron current. In turn, it gives rise, through Ampere’s law, to a
toroidal magnetic field that automatically has a quadrupole
structure. A more detailed qualitative description of this pro-
cess is presented in Sec. II B.

We find that the most elegant and effective way to quan-
titatively analyze the behavior of the system is in terms of
the volume-per-flux integral V(x, V), which has a nice prop-
erty that it is determined entirely by the poloidal magnetic
field structure, W(x,y). We show that both the electron
stream function @, and the toroidal magnetic field B, are just
proportional to V. Thus, once the poloidal field structure is
specified, the poloidal electron velocity and all three compo-
nents of the magnetic field are easily determined just by
computing one integral, i.e., without solving any partial dif-
ferential equations. In particular, we find that, as long as
poloidal ion currents are neglected, the toroidal magnetic
field is constant along electron streamlines. This means that,
within a pure eMHD framework, the toroidal field cannot be
produced. Instead, it has to come from the outer regions of
the reconnection layer, where ion currents are not negligible.

We also find that the toroidal magnetic field is highly
concentrated near the magnetic separatrix. We obtain explicit
expressions for a simple X-point configuration and show that
B, has a logarithmic singularity at the separatrix. In reality,
of course, the vertical pressure balance condition would pre-
vent the toroidal field from being larger that the outside po-
loidal magnetic field B. This means that the pressure asso-
ciated with the toroidal magnetic field becomes dynamically
important near the separatrix and hence the poloidal field
structure must be such as to keep the toroidal field finite. In
addition, the singularity at the separatrix is removed by elec-
tron inertia. In order to estimate the electron inertial term in
the toroidal component of the generalized Ohm’s law, how-
ever, one needs to know the toroidal electron velocity. To
determine it, we consider how the full three-dimensional
shape of a field line changes with time as the field line is
advected into the layer. From this we deduce the toroidal
electron velocity and hence estimate how rapidly the electron
inertial term grows near the separatrix. This enables us to
estimate the size of the region around the separatrix where
the electron inertia is not negligible.

It should be noted that, in spite of the fact that our cal-
culation diverges near the separatrix, it is perfectly valid in
the upstream and downstream regions away from the sepa-
ratrix. In fact, all our integrations are carried out from the x
and y axes toward the separatrix and do not cross it.

Finally, we consider the well-known explanation of how
the quadrupole toroidal field is produced (see, e.g., Ref. 14).
This explanation invokes the differential stretching of poloi-
dal field lines by a nonuniform electron flow in the toroidal
direction. So a natural question to ask is: what makes the
electrons move in the toroidal direction inside the layer? We
argue that the toroidal electron velocity is in fact the sum of
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the E X B drift, associated with the bipolar poloidal electric
field that points into the layer, and the diamagnetic drift due
to electron pressure gradient. However, the latter does not
lead to any motion of the field lines, and so the entire field-
line stretching has to be attributed solely to the bipolar po-
loidal electric field. This illustrates the usefulness of this bi-
polar electric field as an important marker for two-fluid
effects in the reconnection process. We also note that this
electric field plays an important role in ion dynamics inside
the reconnection layer. Namely, it is this field that is respon-
sible for accelerating ions toward the midplane, leading to
two counter-streaming ion beams and thus to an effective ion
heating. The quadrupole toroidal magnetic field also plays an
important role in ion dynamics as it diverts the two beams
out of the layer (via the Lorentz force), thereby creating the
expected stagnation-point pattern for the ion flow.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE ELECTRON VELOCITY FIELD
IN THE SIMPLE X-POINT GEOMETRY

In this appendix we present an alternative derivation of
the poloidal electron velocity (and hence the toroidal mag-
netic field) for our simple X-point magnetic structure de-
scribed by Egs. (2) and (6). We make the same two basic
assumptions: frozen-in law for the poloidal electron flow
(which is not altered by the electron pressure) and incom-
pressibility. Let us split the poloidal electron velocity field
into two parts: parallel and perpendicular with respect to the
poloidal magnetic field. According to Eq. (30), the perpen-
dicular velocity is given by
EZX By

2
B pol

(A1)

Vpol, 1=cC

In terms of the scaled variables introduced in Sec. II C,
we can write the x and y components of this velocity as

_ U = 5>2x
=—=|E|| - | —, A2
o=t pp(2)2 (A2
pol
v y 1
L=t = B2 = - |E| (A3)
S 2
pol

The parallel part of the poloidal velocity can be written
as

Vpol,Il = )\(f’y)]_;pol . (A4)
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The total poloidal velocity field has to satisfy the incom-
pressibility constraint,

V'V:V.Vpol,L+V.vp0],H:O' (AS)

Using expressions (A2) and (A3), we can write the di-
vergence of the perpendicular poloidal velocity, to lowest
order in 6/L, as
_ B
V. Vpol, L = V. Vool L = (?EUL,y =3

¥

(A6)

The divergence of the parallel velocity can be written as

V- Vpol,l\ =V- ()\Bpol) = Bpol VA= Bpolalu)\’ (A7)
where [ is the path length along a poloidal field line. As the
divergence of the total velocity must be zero, we get an
expression for \:

_ [)(®) dl
N(P,5) = f (VYoo 2|
Bpol v
J (V Vool L) (AS)
Using our expression (A6) for V-Vp(,l! 1, we get
AW, %) =— —|E|f (A9)
3&W) | ¢

Using Eq. (7) for the field line shape, 7(¥,¥), we have

LIE*x
- Byoyy
(A10)

N2 _—Ej -
(7.9 =-—|F QW+ﬁW2

Correspondingly, the components of the parallel velocity
are

A E
17‘",(:%:—3;—@& (A11)
L L 1
_ v A |E| 3
Biy=g =3By=-— (A12)
2% ¥

By combining this result with the components of the
perpendicular velocity, we finally get

L

Uy =V TV x = U=~ " _X, (A13)

L E|( & E| _

Uy=0),+0, y=— " —+1|==—y, (A14)
Yy \2wv 20

in complete agreement with our calculation in Sec. II C.
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APPENDIX B: 2D STATIONARY IDEAL ELECTRON
MHD—GENERAL FORMALISM

In this section we describe a general formalism for ana-
lyzing a translationally symmetric electron-MHD system in a
steady state. We assume here that the electron density is uni-
form. In addition, we neglect any ion currents, both toroidal
and poloidal; this assumption is valid if, for example, the ion
temperature is negligible. We also neglect electron inertia;
however, we do include an isotropic electron pressure in our
equations.

In full generality, the system is described by three vector
fields: B, v\, and E, and a scalar electron pressure p,; it is
thus quite complicated. However, these fields are not all in-
dependent of each other. It turns out that the eMHD frame-
work is so constraining that, with the help from the time-
stationarity and translational symmetry conditions, the
magnetic and electron velocity fields can be expressed in
terms of only a single one-dimensional function and a con-
stant. In the following, we outline how this is done.

First, from V-B=0 and the translational symmetry with
respect to z, the magnetic field can be represented by two
functions: the poloidal flux function W(x,y) (which in this
section is measured from the X point x=0=y) and the toroi-
dal field B.(x,y):

B=B2:+B,=B2:+VX[VZ]=B2+[V¥ X Z]. (BI)
The poloidal magnetic field components are

B,=d,V; (B2)

B,=-0,V. (B3)

Next, the electron velocity v\ is completely determined
in terms of the magnetic field by Ampere’s law:
] 1
vo=_Je oy xB, (B4)
n.e D

where D=4mne/c. In particular,

0= - —[v X [V X (¥2)]],= —VZ\P (BS)

V== IV X (B2))=- S[VB.x 2], (B6)
As the density is uniform, D is constant.

Now let us turn to the electric field E. Generally speak-
ing, the overall global magnetic configuration evolves as a
result of reconnection. In particular, there is a continuous
transfer of poloidal magnetic flux through the X point and
hence there is a nonzero toroidal electric field at that point.
This electric field is a measure of the reconnection rate; it is
inductive in nature. However, if the reconnection process is
changing quasistatically on the dynamical (Alfvén) time
scale, then locally, inside and around the layer, the magnetic
field is essentially stationary, ¢B=0. Faraday’s law then
gives VX E=0. Because of the translational symmetry the
toroidal electric field then has to be uniform; then, the poloi-
dal electric field has to be potential:
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E.(x,y) = const; (B7)
Epol(x’y) ==Ve,(x,y). (B8)

Thus, the full three-dimensional electric field is described by
a constant inductive reconnection field £, and a 2D electro-
static potential ¢,(x,y).

This electric field is tied to the magnetic and velocity
fields by the generalized Ohm’s law, i.e., the electron equa-
tion of motion. Neglecting the inertial and resistive terms but
taking into account the Hall term and the electron pressure
gradient term, this law becomes

Vp,

1
E+-[v¥ X B]+ —=0. (B9)
C

€

By taking the vector product of this equation with B, we get
an expression for the perpendicular electron velocity:

(B10)

The first term in this equation is the E X B drift and the
second term is the diamagnetic drift. Thus, the main effect of
the pressure gradient term is the diamagnetic current. This
current is in addition to that associated with the guiding cen-
ter motion due to the E X B drift and needs to be included in
the total current that one substitutes in Ampere’s law.

Provided that the electron density is uniform and the
electron pressure tensor is isotropic, the diamagnetic currents
do not lead to any substantial change in the mathematical
structure of our formalism and are easily incorporated into
our analysis. Indeed, combine the electric and pressure terms
in Ohm’s law into one by defining the modified electric field
vector:

~ 1
E=E+—Vp,.

e

(B11)

As we mentioned earlier, the poloidal electric field is poten-
tial, E,;;=—V¢,. Then, as we also assume that the electron

density is uniform in space, E is also potential, i.e.,

E:Ezz—VquEEZz—V(@—&), (B12)

n.e

and so v(f)zc[ﬁ X B]/B>.

This means that we can take into account the diamag-
netic currents resulting from the electron pressure gradient
simply by working with ¢, and E instead of ¢, and E. Note
that one thus cannot really distinguish between the electro-
static potential and the electron pressure, and hence between
the E X B drift and the diamagnetic drift, within the eMHD
framework. This degeneracy however is not important; in
particular, the magnetic and velocity fields can still be
uniquely determined.

The generalized Ohm’s law can now be written as

Phys. Plasmas 13, 062305 (2006)

~ 1

E=--[v¥ X B]. (B13)
c

Using Egs. (B5) and (B6) for v(¢ and Eq. (B1) for B, we can

then express the components of E as

~ 1
E.=E.= 5[VBZ X VW], = const, (B14)

E (V'Y VV+B.VB.). (B15)

1
pol ™ cD

But expressing Epol in terms of the 2D potential &,(x,y)
by Eq. (B12), we see that (V>*W)VW=Vg(x,y), where
g= cD[ﬁz—Bfl 2. By taking the curl of this equation, we
obtain VX (V2WVW)=V(V>W)XV¥=0, and hence
B, V(V2W)=0. That is, the toroidal current, j,~V*¥, has
to be constant along the field lines, and so must be a function
of ¥ only:

V¥ = F(P). (B16)

This equation is a necessary condition for the system to have
a stationary solution, provided that the ion currents are ne-
glected. This result is consistent with our earlier (Sec. IIT A)
finding based on the analysis of the toroidal component of
the eMHD magnetic induction equation, B * Vo, =v,,* VB..
Notice that, in the main part of the article we considered a
general poloidal field configuration which could be sup-
ported by both ion and electron toroidal currents and thus Eq.
(B16) did not need to be satisfied. However, the poloidal
field structure of our specific example of Sec. I C does sat-
isfy this equation, which means that it could be produced
purely by electron toroidal currents with no ion contribution.
Once condition (B16) is satisfied, we can use the previ-
ous formalism to compute, one by one, all the other electro-
magnetic quantities. To do this for a given function F(W),
one first solves the Poisson Eq. (B16) to find ¥(x,y), and
then computes the poloidal magnetic field B, and the toroi-
dal velocity v, using Egs. (B1) and (B5). Next, one uses Eq.
(B14), supplemented in the upstream region by the boundary
condition B_(x=0,y)=0 [and by B.(x,y=0)=0 in the down-
stream region], to calculate the toroidal magnetic field B..
Indeed, the meaning of this equation is that the rate of
change of the toroidal field along a poloidal field line is equal
to ¢cDE_/By:
B, VB, =[V¥ X 7]- VB, =[VB, X V¥]- ¢
=cDE. = const. (B17)

Therefore, using the symmetry boundary condition at the y
axis, the toroidal field can be immediately obtained by inte-
gration along the field line:

d

X l 1
B.(x, W) =cDE_V(x,¥) = ¢cDE J —
) “Jo Bpoillpo, ¥)
X !

d
- ¢DE, J = @B
0 Bx(x 7\1,)

Finally, one uses Eq. (B6) to determine the poloidal electron
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velocity and Eq. (B15) to determine the modified poloidal
electric field.

This concludes the solution of the problem for a given
poloidal field. The question of what determines the poloidal
magnetic field structure lies beyond the scope of this paper.
Here we just would like to remark that this structure is going
to be affected by the pressure associated with the toroidal
magnetic field. Specifically, as the toroidal field is strongest
near the separatrix, it will push the flux surfaces apart, re-
sulting in a weaker poloidal field near the separatrix. This
effect has to be taken into account self-consistently.
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