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ABSTRACT

We present a physics-based statistical theory of a force-free magnetic field in the corona above a turbulent accretion
disk. The field is represented by a statistical ensemble of loops tied to the disk. Each loop evolves under several physical
processes: Keplerian shear, turbulent random walk of the disk footpoints, and reconnection with other loops. To build a
statistical description, we introduce the distribution function of loops over their sizes and construct a kinetic equation
that governs its evolution. This loop kinetic equation is formally analogous to Boltzmann’s kinetic equation, with
loop-loop reconnection described by a binary collision integral. A dimensionless parameter is introduced to scale the
(unknown) overall rate of reconnection relative to Keplerian shear. After solving for the loop distribution function
numerically, we calculate self-consistently the distribution of the mean magnetic pressure and dissipation rate with
height, and the equilibrium shapes of loops of different sizes. We also compute the energy and torque associated with a
given loop, as well as the total magnetic energy and torque in the corona. We explore the dependence of these quantities
on the reconnection parameter and find that they can be greatly enhanced if reconnection between loops is suppressed.

Subject headings: accretion, accretion disks — magnetic fields — MHD — Sun: corona —
Sun: magnetic fields — X-rays: binaries

1. INTRODUCTION

Power-law components in the X-ray spectra of accreting black
holes are attributed to hot, tenuous, quasi-spherical plasmas called
accretion disk coronae (hereafter ADCe) by analogy with the
solar corona, although Compotonization rather than atomic lines
or bremsstrahlung is thought to be the main emission mechanism
in accreting systems (Bisnovatyi-Kogan & Blinnikov 1976;
Liang & Price 1977). The vertical extent of ADCe is open to
doubt since they are spatially unresolved and since the electron
temperature inferred from high-energy spectral cutoffs, 7, ~
100 keV, is typically small compared to the virial temperature
of the ions, 7; ~ 100 MeV. Direct simulations of magnetoro-
tational (hereafter MRI) turbulence in radiation-pressure—
dominated disks show very large density contrasts and bulk
velocities (Turner et al. 2002), so perhaps the power laws are
made within the disk itself (Socrates et al. 2004).

If a Comptonizing corona indeed exists, then it is difficult to
avoid the conclusion that it should be magnetically dominated.
The electrons themselves cannot store much energy (Merloni &
Fabian 2001): their Compton cooling time is at most compa-
rable to the local dynamical time at luminosities 210"2Lgqq and
radii S20GMyp/c?. Tons at virial temperatures would store much
more energy but could not transfer it efficiently to the electrons
by Coulomb collisions (Rees et al. 1982). Also, as in the solar
case, magnetic fields are probably needed to convert mechanical
energy of the optically thick regions into coronal heat. And since
accretion is believed to be driven by MRI turbulence within the
disk proper, it is expected that fields float up into the corona by
Parker and interchange instabilities (Galeev et al. 1979; Tout &
Pringle 1992).

Despite widespread recognition of these points, modelers
of ADC emission rarely concern themselves with the dynamics
of coronal magnetic fields. This is perceived to be too hard;
certainly the long and arduous struggle to understand the heating
of solar corona—based on much more abundant data—tends
to discourage hopes of solving the corresponding problem for
accreting systems any time soon (e.g., Walsh & Ireland 2003;
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Klimchuk 2006). Attempts to model coronae through direct
three-dimensional (3D) magnetohydrodynamic shearing box
(Miller & Stone 2000; Hirose et al. 2006) and global (Machida
et al. 2000) simulations have been made, however. To date, such
simulations suggest that while a magnetically dominated region
does form, its vertical extent, when defined by distributions of
shear stress or dissipation rate, exceeds that of the optically thick
regions only modestly.

There are nevertheless good reasons to expect dynamically
dominant coronae and to question the contrary evidence from sim-
ulations. On the one hand, a strongly magnetized corona may be
required to extract power from black hole spin (Blandford &
Znajek 1977) or from plunging gas inside the marginally stable
orbit (Gammie 1999; Krolik 1999), or to drive a wind from the
disk (Blandford & Payne 1982). A less widespread motivation,
which however we feel strongly, is to reduce self-gravity in the
outer parts of accretion disks in active galactic nuclei (at r 2
103 GMyp/c?): a magnetized corona or wind might transport an-
gular momentum more quickly than stresses limited to the opti-
cally thick layer, and thereby reduce the mass density within the
disk for a given accretion rate (Goodman 2003).

On the other hand, codes designed for pressure-dominated
plasmas may not be reliable when applied to magnetically dom-
inated coronae. Shearing box calculations cannot be trusted to
represent magnetic structures much larger than a disk scale height
(H) unless all three dimensions of the box are >>H, which has
not yet been achieved. Global simulations are unable to resolve
thin disks and extended coronae unless the grid is made coarser
in the corona than near the midplane, which increases numerical
diffusion in the corona. This is not serious when H ~ r, as for
the innermost parts of near-Eddington or radiatively inefficient
accretion disks, where the X-ray evidence for coronae is strongest;
but it would be a severe limitation for simulations of the mar-
ginally self-gravitating parts of AGN disks, where H/r < 1072
These problems of spatial dynamic range will eventually be over-
come with sufficient computer power.

A more fundamental difficulty for simulations has to do with
magnetic reconnection. We will argue that the efficiency of
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reconnection' is crucial to the storage and dissipation of magnetic
energy in ADCe, as it appears to be in the solar corona (Parker
1983, 1988; Klimchuk 2006). Reconnection in solar flares is ob-
served to be “fast,” meaning that annihilating field lines come
together at a significant fraction of the local Alfvén speed. This
is not well understood; because of the very high conductivity of
the corona, MHD predicts reconnection rates slower by many
orders of magnitude (Sweet 1958; Parker 1957). Collisionless
plasma effects outside conventional resistive MHD may be nec-
essary (Uzdensky 2007a,2007b, and references therein). Another
mystery is what triggers fast reconnection, which does not always
occur immediately but seems to require special conditions that
have not been fully identified (Klimchuk 2006). The overall rate
of magnetic dissipation depends both on the rate at which re-
connection events are triggered and on the speed of reconnection
during such events.

These complexities are elided by the astrophysical MHD codes
used to study magnetorotational turbulence. Often in these codes,
reconnection is purely numerical, that is, produced by truncation
errors due to limited grid resolution. Explicit diffusivities are
sometimes used, but if these are large enough make truncation
errors unimportant, then they are necessarily orders of magnitude
larger than astrophysical reality. Until recently, the general view
among MRI simulators seems to have been that the microphysics
of reconnection is unimportant. This view may be inspired by
analogies with the dissipation of kinetic energy in hydrodynamic
turbulence, both compressible and incompressible. Supersonic
turbulence involves shocks, and as is well known shock dissipa-
tion is independent of transport coefficients in the limit that these
are small. On the other hand, three-dimensional incompressible
turbulence involves inertial cascades such that dissipation, al-
though occurring on small (viscous) scales, is entirely controlled
by the dynamics on large scales and proceeds at rates that are again
asymptotically independent of transport coefficients.

Whether or when turbulent magnetic dissipation is similarly
independent of small—and therefore numerically unresolved—
scales is an open question. Recent work indicates that magneto-
rotational turbulence is sensitive to the magnetic Prandtl number
Pr,, = v/n (Lesur & Longaretti 2007; Fromang et al. 2007), at
least in the range of fluid and magnetic Reynolds numbers (Re =
VL/v, Re,, = Pr,Re) accessible to direct simulations. It may be
that Re,, and Re become unimportant when both are sufficiently
large, but this has not yet been established even for kinematic
dynamos, where the field is dynamically unimportant on all scales
by construction (Boldyrev & Cattaneo 2004; Schekochihin et al.
2007, and references therein), much less for MRI turbulence.
Even if this is true of systems in which fluid motions dominate
the energy density, as they are presumed to do near the midplane
of an accretion disk, the answer could be different for magnetically
dominated systems such as ADCe. Perhaps relevant here is the
case of turbulence in the presence of a dominant mean field, which
has become somewhat better understood since the seminal paper
of Goldreich & Sridhar (1995). Cascades do exist in such turbu-
lence, with different scalings along and perpendicular to the mean
field, so that the large scales are insulated from details at the
resistive and viscous scales. However, there are at least two im-
portant differences between such systems and the nearly force-
free ADCe contemplated in this paper. In the former systems,
the Alfvénic propagation time along the field is assumed to be

' 1t would be natural to write “rate of reconnection” here, but that this
phrase is often used to mean the speed at which field lines of opposing polarities
approach one another in a localized reconnection event, whereas we are concerned
here with the global efficiency of reconnection in reducing magnetic energy.

longer than the timescale of the cascade, so that the turbulent
dynamics are local; by contrast, communication along the entire
length of a line-tied coronal loop is effectively instantaneous com-
pared to the timescale on which energy is injected into the loop
by footpoint motions. The magnetic dynamics are therefore non-
local, and not appropriately characterized as turbulent; a better
description is a progression of force-free equilibria driven by
changes at the boundary. (See, however, Rappazzo et al. [2008]
for a contrary view.) Secondly, in Goldreich & Sridhar (1995)’s
Alfvénic cascades, the deviations from the mean field are small,
and the cascade does not affect the energy in the large-scale mean
field. In this paper, by contrast, we are concerned with coronal flux
loops that reconnect with one another at large angles between their
field lines. A significant fraction of the loops’ magnetic energy
may be liberated in such reconnection events, or in the relaxation
to a new force-free equilibrium following topological changes
brought about by reconnection.

It might be hoped that the MRI simulations could predict the
total dissipation rate of the corona, if not its vertical distribution,
because the rate of injection of energy to the corona is determined
at its base, where thermal and kinetic energies dominate. This is
a false hope, however. The rate of work done on the corona by
the disk is proportional to the magnetic stress tensor at its base,
specifically the 7z and ¢z components of the stress. Insofar as the
corona is approximately force-free, its total energy is expressible
in terms of a boundary integral involving the same stress com-
ponents. Thus, if the coronal energy and magnetic configuration
are incorrectly calculated, then the coronal dissipation rate is
probably also incorrect. More concretely, because most of the ki-
netic energy available from the disk is the large-scale differential
rotation rather than local turbulence, coronal field loops with large
radial separations between their footpoints may be particularly
important for the energy input; such loops are not possible in
shearing box simulations, whose radial dimensions are no larger
than the disk scale height, and even if the dimensions were in-
creased, spurious reconnection might suppress the large loops.
In short, for geometrical reasons and because they do not model
reconnection correctly, present-day MRI simulations may under-
estimate the energies and dissipation rates of disk coronae.

The dynamics of ADCe may not be fully understood without
great progress on all of the fronts described above: more powerful
computations, better understanding of fast reconnection, and of
course more incisive observations. Since all of this may take years
or decades to accomplish, our purpose here is to try to imagine,
in a disciplined way, some aspects of that ultimate understanding.
Our approach is clearly indebted to Tout & Pringle (1996, here-
after TP96), but is richer in physical elements. We model the
ADC as an assembly of closed magnetic loops with footpoints
on the disk; the open field is probably important but is deferred to a
later paper because we do not wish to address winds here. We do
not resolve the dynamics within the optically thick disk at all but
treat the base of the corona as a dynamic boundary. It is assumed
that the disk thickness is much less than its radius in the parts of
the ADC that we model and that the loop lengths (L) lie at in-
termediate scales (H < L < r). Thus, the lower boundary is
conceived as an infinite plane. Small new loops are injected from
this boundary, and existing loops are energized by the Keplerian
shear if their footpoints lie at different radii. Loops reconnect in
pairs according to prescribed rules with a frequency scaled relative
to the shear by a dimensionless parameter. Each reconnection
results in a new pair involving the same four footpoints differ-
ently connected, rather than a single loop as in TP96. The loop
population is described by a distribution function over the length
and orientation of the displacement from the negative to the



610 UZDENSKY & GOODMAN

positive-polarity footpoint (rather than the length alone as in
TP96), and the processes of injection, stretching, and reconnec-
tion are incorporated in an integrodifferential kinetic equation for
the evolution of the loop distribution function.

Our model is not appropriate for all forms of ADCe. Following
Liang & Price (1977) we presuppose a “sandwich” geometry in
which the optically thick but geometrically thin disk coexists with
its corona at the same radius. Such a geometry seems most appro-
priate to high/soft and very high states of Galactic X-ray sources
where the X-ray continuum shows both thermal and power-law
features, and also to cases, both Galactic and extragalactic, where
a relativistically broad iron Ke line indicates that an optically
thick disk, fluorescing under illumination by hard X-rays from
the corona, extends down to the marginally stable orbit or beyond
(e.g., Wilms et al. 2001; Miller et al. 2002). In low/hard states
where only a power-law is seen, it may be that the inner parts
of the thin disk have evaporated so that those regions are all
“corona” (Esin et al. 1997); alternatively, the thin disk may
persist down to the marginally stable orbit, but the corona may
take the form of a mildly relativistic outflowing wind or jet, whose
emission is directed away from the disk (Beloborodov 1999;
Miller et al. 2006). The coronal model presented here would not
apply to either of these cases without substantial modification.

In this paper, we explore what controls the magnetic energy,
integrated stress, and dissipation rate of the corona; specifically,
we explore the roles of shear and reconnection in this balance.
Our overarching motivation is to determine under what conditions
the corona contributes importantly to outward angular momentum
transport: that is, to the torque that drives accretion through the
disk. Secondary goals are to examine the distribution of energy,
stress, and dissipation with height. We recognize that because
of a number of questionable assumptions and simplifications, our
model will hardly be the last word on this subject. We hope, how-
ever, at least to set up a target for future simulations to aim at, and
to draw attention to certain quantities that could be extracted from
existing simulations, such as the rate of emergence of flux dipoles
(small loops) from the disk.

The outline of our paper is as follows. Section 2 introduces our
conception of magnetic loops and the loop distribution function.
Section 3 explores some properties of loops in equilibrium with
the mean-field pressure exerted by neighboring loops: shape,
maximum height, and energy. Section 4 constructs the kinetic
equation, including the rules for reconnection and other processes
important to the evolution of the loop distribution. The numerical
setup used to solve the loop kinetic equation, including the bound-
ary conditions at both small and large scales, is described in § 5. In
the same section we also present numerical solutions and discuss
their implications for ADCe. In § 6 we discuss limitations of our
model in the light of these results, and we indicate ways in which
the model might be made more realistic. We attempt to relate what
we have done to the present theoretical understanding of ADCe,
and we discuss how simulations in the near future might be used
to calibrate some features of our model, for example the rate of
emergence of small loops from the disk. Finally, § 7 summarizes
our main conclusions.

2. STATISTICAL DESCRIPTION OF THE ADC
MAGNETIC FIELD

As noted in § 1, there are fundamental physical similarities
between the formation processes of the solar and accretion disk
coronae. At the same time, one has to keep in mind the important
differences between them. These include (1) differences in the
underlying subphotospheric turbulence (thermal convection vs.
MRI); (2) a strong large-scale differential rotation and shear in
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Fig. 1.—Schematic view of ADC as an ensemble of many magnetic loops.

disks, whereas small scales dominate the shear in the Sun; (3) the
possibility of strong magnetocentrifugally and radiation driven
winds from an accretion disk, as compared to the relatively weak
thermally driven solar wind; (4) Compton cooling of the disk
corona in black hole systems; (5) a greater separation of spatial
scales in thin disks between the disk thickness and its radius, as
opposed to the solar case, where the convection zone spans a sig-
nificant fraction of the Sun’s radius, which results in the genera-
tion and emergence of very large magnetic structures associated
with sunspots in active regions. Finally, we have only one Sun,
whereas there is a large variety of astrophysical accretion-disk
systems, some of which have coronae.

In addition to the above, there is an important basic difference in
our observational capabilities: whereas the Sun is so close that we
can spatially resolve individual events and structures in the solar
corona (such as flares, loops, etc.), such resolution is not available
for ADCe. Therefore, we can study only the spatially integrated
spectral and timing properties of the disk corona. This fact pro-
vides a strong motivation for focusing on a statistical description
for the magnetic field in the ADC.

Here is, briefly, the basic physical picture of the magnetized
corona above a turbulent accretion disk. The corona is a dynamic,
self-organized system that can be represented by a statistical en-
semble of flux loops (TP96; Hughes et al. 2003; see Fig. 1). The
loops continuously emerge out of (and submerge into) the disk
as a result of magnetic buoyancy. Once above the surface, they
constantly evolve due to a number of physical processes. They
are twisted and stretched by the differential Keplerian rotation and
by the random motions of their footpoints on the disk’s surface,
which causes the individual loops to inflate. As a result, the mag-
netic field in the corona becomes nonpotential and highly stressed;
an appreciable amount of free magnetic energy can thus be stored
in the corona. However, in the process of twisting and expansion
the loops may undergo internal disruptions due to MHD insta-
bilities and also may reconnect with other loops. Such relaxation
events manifest themselves as flares; they bring the field closer to
the potential state and thus enable the inflation process to resume.
At the same time, reconnection between loops sometimes pro-
duces more spatially extended magnetic structures in the corona
(the coronal “inverse cascade”). Finally, all these complicated
processes occur repeatedly over and over, simultaneously, on
various spatial scales. Thus, the corona can be viewed as a boiling
magnetic foam, in which magnetic loops repeatedly swell and
grow because of the magnetic energy pumped into them by the
footpoint motions and then snap and contract back due to re-
connective disruptions and sometimes merge to form bigger
structures.
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What is the appropriate statistical language for describing a
chaotic, highly intermittent magnetized corona above a turbulent
accretion disk? At a most general level, we describe the corona by
an ensemble of some elementary magnetic structures. Each of
these fundamental individual constituents of the corona is char-
acterized by a small set of primary physical parameters. The in-
dividual elements evolve with time according to certain rules that
reflect the relevant physical processes that we believe are most
important in shaping the corona. These processes generally in-
clude various forms of interaction between elements. Mathemat-
ically, the evolution rules are represented by stochastic (Langevin)
equations of motion of magnetic elements in the primary param-
eter space. Since we are interested in a statistical description, we
introduce a distribution function of our magnetic elements in the
primary-parameter phase space. Correspondingly, one of our main
goals is to derive the equation for the evolution of this distribution
function, using the equations of motion of individual elements.
This is done by analogy with the way the Boltzmann kinetic
equation for the particle distribution function in a gas is derived
in statistical mechanics, but obviously is more ad hoc in our case.
Finally, there are several important integral quantities in our the-
oretical framework, which are related to moments of the distri-
bution function. These self-consistent quantities represent the
mean-field interaction between the magnetic elements and they
affect the evolution of the distribution function.

2.1. The Loop Distribution Function

Based on the above discussion, we shall now build a calculable
model of the corona. Our first task is to select the most appropriate
and most fundamental elementary magnetic constituents of the
corona. We shall then need to select the most natural set of pa-
rameters describing these elements.

Guided by the analogy with the solar corona, we shall use
simple (anchored in the disk at both ends, see Fig. 2) magnetic
loops, or flux tubes, as our fundamental magnetic elements—
the main structural constituents of the corona. This choice is in-
fluenced by the existing theoretical work in both solar physics
(e.g., Hughes et al. 2003), and also in ADC (TP96). Such loops
represent the closed magnetic field corresponding to zero net
vertical flux through the disk. This is a natural assumption for the
case when the magnetic field in the corona comes from the flux
emergence of the field generated by the dynamo in the disk itself.
In this paper we shall assume that this is indeed the case. In
principle, however, one may also wish to consider a more general
situation where, in addition to the closed coronal loops, there is
also an external large-scale open magnetic field through the disk,
such as may be coming from the central star or the interstellar
medium (see § 6.1).

For simplicity, we shall characterize each loop by only two
primary parameters: (1) the radial footpoint separation Ar =
r_ — ry,and (2) the azimuthal footpoint separation rA¢ = Ay =
y— — y. (see Fig. 2). Thus, we shall measure Ar and Ay from
the plus-sign magnetic footpoint to the minus-sign magnetic
footpoint. This means that Ar and Ay can be positive or neg-
ative depending on the orientation of the loop. Alternatively,
sometimes we will use an equivalent representation in terms
of the loop’s projected length (the distance between the loop’s
footpoints): L = (Ar? 4+ Ay?)!/2; and the orientation angle,
0, measured clockwise with respect to the toroidal direction:
0 = arctan (Ar/Ay).

In a more general description, one may enlarge the parameter
space to include additional parameters, such as the magnetic
flux AW contained within a loop, or the loop’s twist (see § 6.2).

STATISTICAL THEORY OF ACCRETION DISK CORONA 611

‘w?’=’"¢

Fic. 2.— Closed magnetic loop as the main structural element of a magnetized
accretion disk corona.

However, since our goal here is to build the simplest version of
this already very complicated theory, we shall assume that all the
loops have the same magnetic flux AW and, furthermore, that they
are not twisted. The latter assumption means that the magnetic
field within each loop is purely potential, i.e., that the bulk of the
corona is nearly current free and all the coronal currents flow
along interloop boundaries.

In addition to the above two primary parameters, we shall
also need some secondary parameters describing a given loop,
such as the loop’s overall shape, its maximum height Z,, above
the disk; and its thickness at a given height, d(z). These quantities
will be useful for estimating the loop expansion rate and for
analyzing binary interaction (reconnection) of loops with each
other. In our model, these secondary parameters are uniquely
determined by the primary ones in combination with the self-
consistent mean field B(z) (see § 3.2).

Note that a loop carrying a finite flux AW has a certain finite
thickness (in the radial and azimuthal directions) at the disk
surface. For a typical loop, this thickness is generally of order H.
Therefore, instead of a pair of footpoints that a field /ine would
have, a finite-thickness /oop has a pair of footspots. Thus, we
need to be a little bit more precise in our definitions of Ar and
Ay. We shall define them as the radial and azimuthal separations
between the centers of the two footspots, that is, between the two
footpoints of the central field line of the loop (magnetic axis for
a twisted loop).

Following TP96 we introduce the loop distribution function,
F(Ar, Ay), defined so that F(Ar, Ay)dArdAy is the number
of loops with the values of primary parameters in the range
([Ar, Ar + dAr], [Ay, Ay + dAy)), per unit disk area. Alterna-
tively, we may write the distribution function in terms of loop
length L = (Ar? 4+ Ay?)"? and orientation § = arctan (Ar/Ay),
i.e., F(L, ). The overall normalization of the distribution func-
tion is determined by the requirement that loops cover the entire
disk surface; it will be discussed in more detail in § 3.2.

2.2. Role of Magnetic Reconnection in ADCe

At the most basic level, the corona (either solar or ADC) is
perfectly conducting almost everywhere. However, as it evolves
driven by the complex turbulent motions of the magnetic foot-
points on the surface, the corona may develop numerous current
sheets on a variety of scales (Parker 1972, 1983). These current
sheets are possible sites of dissipation of magnetic energy via
reconnection. In fact, reconnection is one of the most essential
nontrivial physical processes that govern the complex dynamical
behavior of the corona. In particular, it controls the vertical extent
of the corona (e.g., the coronal magnetic scale-height H3). Indeed,
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if reconnection were too efficient, then the coronal field would be
nearly potential and Hz ~ H; then, the free magnetic energy
stored in the corona would be small, as would the magnetic dis-
sipation rate.

On the other hand, if no reconnection were allowed at all,
then magnetic loops would, over time, grow bigger and bigger
in height because of the differential Keplerian rotation. Unable to
dissipate, magnetic energy would continuously accumulate in the
corona as the characteristic magnetic scale-height Hp increases,
essentially linearly in time. This phase would continue until Hp
became comparable to the disk radius, Hg ~ r > H. After that,
radial gradients become important and the subsequent evolution
would enter a qualitatively different regime characterized by accel-
erated expansion of the magnetic loops, which effectively would
become open, perhaps even in a finite time (van Ballegooijen
1994; Lynden-Bell & Boily 1994; Aly 1995; Sturrock et al.
1995; Uzdensky 2002). The corona would then consist of a dense
forest of open flux tubes of alternating polarity separated by a
multitude of current sheets. Unless there are significant mass-
loaded winds (violating the force-free assumption), the power
pumped into the corona would then go down, and the accumulated
free magnetic energy would saturate at a value corresponding to
a fully open (split-monopole) magnetic field (Aly 1991; Sturrock
1991). Although this asymptotic energy would be very large, of
order »/H larger than that of the fully closed potential field, it
would still remain finite; this is because the toroidal magnetic
field at the disk surface and hence the work done on the coronal
magnetic field by the Keplerian disk shear would both go to zero.
Similarly, the angular momentum exchange between different
parts of the disk due to coronal loops would also go down. As
new flux tubes emerged from the disk, the magnetic forest would
become ever more dense. The corona would thus look very dif-
ferent from what we expect. We thus see that reconnection is
necessary for maintaining a meaningful statistical steady state.
It enables open field lines to close back and thus restores the
magnetic connection between different parts of the disk. This,
in turn, facilitates angular-momentum transport via the coronal
magnetic field (coronal MRI; Goodman 2003; see also Heyvaerts
& Priest 1989; Pavlidou et al. 2001). Strong magnetic dissipation
and large torque thus require some intermediate reconnection
efficiency, neither so rapid as to keep the field nearly potential,
nor so slow as to allow it to become fully open; in both limits,
the torque and energy dissipation rate vanish.

Another reason why reconnection is important is that a growing
magnetic loop may reconnect with another one connected to a
very different place on the disk. This process may lead to an
“inverse cascade” of magnetic loops (TP96). It is an important
avenue toward building up a population of loops with large
radial footpoint separation. Indeed, whereas Keplerian differential
rotation increases the azimuthal footpoint separation of a loop, it
does not affect its radial footpoint separation. Therefore, without
reconnection, the radial footpoint separation of a coronal flux
loop would change only relatively slowly by the random walk of
its footpoints due to the underlying disk turbulence. In principle,
the footpoints will drift radially apart in direct response to the
angular momentum transfer by the coronal loop itself (we call this
process “coronal MRI”). The characteristic velocity of this drift
is on the order of B?/4w¥Q), where ¥ is the surface density of the
disk. The resulting relative increase in Ar on the rotation-period
timescale is of the order of §Ar/Ar ~ B*/ArEArQ?. Using
>~ Hpand H ~ ¢;/Q), where ¢, and p are the sound speed and
the gas density within the disk, we can estimate that A r/Ar ~
(Vales)*HIAr = 3~'H/Ar, where V} = B?/drp is the Alfvén
speed within the disk. Thus, since we are mostly interested in

P(z)

Fic. 3.—Untwisted isolated loop confined by external isotropic pressure P(z).

large loops, Ar > H, we see that Ar cannot grow appreciably
without reconnection.

In addition, magnetic reconnection in the corona regulates the
fraction of the magnetic flux that is open at any given time and
also the effective radial transport of a large-scale vertical magnetic
field (Spruit & Uzdensky 2005; Fisk 2005). Both of these pro-
cesses are important for establishing large-scale disk outflows.

Finally, as in the solar corona, reconnection between mag-
netic loops in the ADC is believed to be the main mechanism of
releasing the accumulated magnetic energy, leading to plasma
heating and nonthermal particle acceleration. It is therefore directly
responsible for the observed high-energy coronal emission (e.g.,
Field & Rogers 1993).

3. THE SELF-CONSISTENT CORONA

In principle, the loop distribution function F(L, 8) contains
enough information to fully describe the statistical magnetic
structure of the corona. This means that, once F'(L, 6) is known,
one should be able to answer most of the questions posed in §1.
In particular, one should be able to derive the actual shapes and
heights, Zi,,(L), of coronal loops, the distribution of magnetic
energy with height, B>(z)/8m, the energy £(L) associated with a
loop of a given size, the torque transmitted by the coronal mag-
netic field, etc. In this section we demonstrate how to do all this.

3.1. Equilibrium Shape of a Loop in a Stratified Atmosphere

First, we shall work out the correct shape of an isolated slender
(with a cross-sectional diameter d < L) untwisted loop A car-
rying magnetic flux AW, immersed in a medium with some iso-
tropic but, in general, nonuniform pressure P(z) (see Fig. 3). This
pressure represents the confining magnetic pressure of all other
loops; thus, for actual calculations, it will be convenient to write
P(z) as P(z) = B?(z)/8n. The shape of the loop is then determined
by the requirement that the loop be in magnetostatic equilibrium
with this external pressure.

First, the local pressure balance across the loop gives us the
magnetic field strength inside it as a function of height:

B(z) = \/87P(z) = B(2). (1)

Then, since the magnetic flux is constant along the loop, we can
write the local cross-sectional area a(z) of the loop in terms of B(z):

AW
a© =50 @
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Now let us discuss equilibrium shape x(z) of a slender loop as
awhole, represented by the shape of the loop’s central field line.
First, we would like to note that, for a curved but untwisted loop
confined by a uniform external pressure Py, it is impossible to
find an equilibrium shape. Indeed, since the field inside the loop
has no twist and is purely axial (i.e., runs along the loop), itis a
potential field produced by perpendicular (to the direction of
the loop) currents flowing on the loop’s surface. Therefore, at
any given location along the loop, the magnetic field strength
is slightly nonuniform in the cross-loop direction: it drops off
as 1/R, where R is the local curvature radius (““major radius’ in
tokamak terminology). In other words, the magnetic force bal-
ance between the magnetic pressure and the magnetic tension
inside a curved loop means that there must be a magnetic pres-
sure gradient to balance the tension force due to the curvature.
Therefore, the magnetic field on the underside (the “inboard,”
in tokamak terminology) of the loop is larger than that on the
upside (the “outboard”). On the other hand, however, the mag-
netic field at each point on the surface of the loop has to be in
pressure balance with the external pressure P(z). If P(z) = Py =
const., this pressure balance means that the magnetic field has
to be uniform along the loop’s boundary. Thus, we have a clear
incompatibility between the assumption that the loop is curved
but untwisted and the condition of local force balance with an
external uniform pressure.

This phenomenon can also be understood using the notion of
Pfirsch-Schliiter currents, a well-known concept in tokamak
physics. Since the magnetic field inside an untwisted flux tube
is strictly in the axial direction (along the tube), the currents that
produce it flow on the skin of the tube in the perpendicular di-
rection. But since the currents have to close, and since the tube is
curved, the surface current density (i.e., the current per unit length
along the tube) is bigger on the underside than on the upside.
Then, according to Ampere’s law, the magnetic field is also
stronger on the underside, and thus cannot be in pressure equi-
librium with a uniform external pressure on both sides simulta-
neously. The only way a curved loop can be in equilibrium with
uniform external pressure is when the surface current density is
also uniform. Since the current has to be conserved, this requires
that some surface current should also flow along the loop (the
so-called Pfirsch-Schliiter current), and hence the magnetic field
must be twisted.

These considerations show that an untwisted flux tube confined
by a uniform external pressure has to be straight. If, however, the
pressure is not uniform, then an equilibrium shape for a curved
tube can be found, as we now show.

Let us consider a case with pressure P(z) decreasing mono-
tonically with height. Consider a slender loop in the (x, z)-plane,
symmetric with respect to x = 0, with its two footpoints at
x = £ L/2 (see Fig. 3). The shape of the loop as a whole, de-
scribed by a symmetric function z(x), is determined by the per-
pendicular (to the magnetic field) force balance between tension
and the pressure-gradient forces. The force balance is established
at every point along the loop. To analyze it at a given location on
the loop, let us consider a small loop segment. We shall denote
the arc length along the loop, measured from its left footpoint,
by I. For clarity of discussion, let us represent the loop segment
locally by a slightly curved cylinder of length 6/ << L, cross-
sectional area a(/), and curvature radius R(/) (see Fig. 4). Let us
also introduce the angle (/) between the magnetic field and the
vertical direction:

dz
==, 3
cosa=—; (3)
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-4

central line

X

Fic. 4 —Infinitesimal loop segment.

For definiteness, we consider the ascending leg of the loop,
where B, > 0, so that 0 < o < 7/2. The local curvature radius
R(I) of the loop is related to «(/) via

1 da

—=— 4

R di “)
Here we treat B(z) as a known function and our goal is to de-
termine the geometrical shape of the loop described by a/(z).

The magnetic tension force on the loop segment acts in the
direction of its curvature radius R and is equal to

B2
Often = 471_—Ra(l) ol, (5)

The projection of the external-pressure force on the loop segment
onto R can be written as

Sfop = f‘é—P sin ava(l) 61. (6)
zZ

Then, the force-balance condition can be written simply as

B 1 dp

L _q - 7

47 R s dz’ )
or, making use of equation (1),

—sina —. (8)

Combining this equation with the geometrical relation (4), we
immediately obtain

doo 1 _dlogB

W_R: dz

sin a. 9)

(Note that, as one can immediately see, a magnetic loop can be
in equilibrium with a uniform [B(z) = const.] external pressure
only if it is straight, & = const.)

Using (3), we get

da dlogB . C
t _ = . 1
cotar — 5, = sin a(z) 5o (10)

It is interesting to note that the same result can be obtained in
a simple and elegant way by using a variational principle,
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namely, by minimizing the loop’s magnetic energy Enagn =
(AW/87) [B(l)dI (see § 3.4) viewed as a functional of z(x).
Using the relationship dx = d/ sin o, we have

e 20 = 0 [ BE]V/T+ 20 dx

AV , z" bz(x)dx
=% {B(z)—B(z)l_’_Z/2 Nz (11)

From the condition 6Emae, = 0, we thus immediately get

B:c\/1+z/2(x):c$: < (12)

sina’

which, taking into account that B = B(z), is the same as the above
result (10).

The result (10) means that the horizontal (x) component of
the magnetic field is constant along the loop:

B\(l) = Bsina = B(z) sina = C = const. (13)
The integration constant C is just equal to the magnetic field

Biop at the top of the loop (where o = 7/2). Thus, the shape of
the loop is given by the equation

sin a(z) = gzzl; . (14)

We can now work out an explicit expression for the field line
shape z(x) in terms of the function b(z) = B(z)/B(z = 0). Let us
denote the magnetic field strength at the base by By = B(z = 0)
and the angle between the loop and the vertical direction at the
base by a(L) = a(z = 0; L). We then have

Biop(L)
By

biop(L) = = sin ap(L). (15)

Then, the shape of the ascending leg of a loop of length L is
given by

/

Ftop dz
x(z) = — bop / ——
z bZ(Z/) - btzop

L z dz'
:_§+bt0p/ M (16)
0o B2y — B2

top

The height of the loop, zp, is determined implicitly by the con-
dition x(ziop) = 0:

L Ziop dz’
E == btop / — . (17)
0 bZ(Z/) _ b2

top

Analogous expressions have been obtained by Parker (1975) and
Browning & Priest (1984).
Here are a few analytical examples of the use of this relationship.

1. Example [—

1

b(Z):m,

(18)
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where = z/z; zy represents the characteristic magnetic scale
height of the corona. Then we get bop(L) = 2z9(423 + L>) ™',
and zop(L) = (22 + L2/4)"? — z,.

2. Example I—Exponential atmosphere:

b(z) = e/, (19)
Performing  integration (17), we obtain x(z) =
—H arctan[¢2@r—2"H _11V2_and correspondingly,

L(Zop) = 2Harccos|[b(Ziop)] = 2H

g - ao(zmp)} . (20)

Notice that for tall loops with Z,, > H and by, < 1, the de-
pendence L(Z,p) saturates: L(Zp) — Lmax = 7H. This example
illustrates an important point: if the external pressure drops off
sufficiently steeply, then there is a maximum projected length,
Lumax, that a loop in equilibrium can have. This implies that if
one tries to insert a slender loop with a footpoint separation
L > Ly, then such a loop will not be able to attain an equilib-
rium and will instead grow in height without bound, i.e., will
tend to open up.

This fact points to an important feedback: for a given external
pressure profile, large loops extend to larger heights, but this
has an effect of increasing the contribution of these loops to the
pressure at these large heights (see below), and hence may make
the pressure profile less steep.

3.2. Magnetic Energy Density B*(z)/87
as a Self-Consistent Mean Field

Our next step is to determine B as a function of z. However, the
best way to do this is first to express B directly in terms of the
length of the smallest loop L that reaches the given height z, i.e.,
to find B(L). This can be done directly in terms of the orientation-
integrated distribution function F(L) = [ F(L, #) db, since, at any
given height z, contributions to the magnetic pressure B~/87 come
only from those loops that extend to this height or higher. Since
the dependence Z,,(L) is presumed to be monotonic, then B ata
given height z will be proportional, roughly speaking, to the
integral over all loops with lengths L > L(z), where L(z) is the
function inverse to Zyp(L). Thus, naively, we anticipate a result
that looks something like this:

B(L) ~ AW / h F(L)dL. (21)
L

In Appendix A we perform a rigorous analysis and derive an
exact (within our model) result:

AV - AT [~
db = - """ F(LydL = b(L) = =~ [ F(L)dL', (22)
0 o Jr
that is,
Bul) = 20 [ F(L)aL (23)
L

The condition b(z = 0) = 1, in conjunction with Z,(L = 0) =
0, gives us the normalization condition for the function F(L):

/0 F(LdL = WZZO\I/ . (24)
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If all the loops were perpendicular to the disk surface, the nor-
malization coefficient would be 1/2 (since each loop has two
footpoints). The extra factor (2/7) in the above expression re-
flects the fact that small low-lying loops are not perpendicular
to the disk surface, and hence occupy larger horizontal projected
area on this surface. _

For a given loop distribution function (L), one can thus com-
pute, in principle, the function b(L) that we shall need in the § 3.3.

3.3. Self-Consistent Loop Height Z,p(L)

Once L(byop) is thus determined, we can substitute it into equa-
tion (17) and thus reduce the whole problem to the following
integral equation for the function U(b) = dz/db:

L) YU(b')ab’ )5
E I A 5)

Once this equation is solved, we can integrate U(b) to find z(b),
thus completing the solution.

Mathematically, equation (25) is a linear Volterra integral
equation of the first kind for the function U(b) in terms of a known
function L(b). It can be solved exactly. In particular, by a simple
transformation of variables: t =1 — b7, s =1 —b%, G(s) =
L(b)/2b, and V(t) = —U(b")/2b/, it can be transformed into the

Abel equation:
S V() dt
= G(s). 26
| 2= =60 (26)

whose solution is

Vis) = 1 d [*G@)dt _ l/OY G'(t)dt

T nds 0o Vs—t T Vs—1’

where we have used G(s = 0) = L(z = 0)/2 = 0.

Actually, the most useful form of the solution is the first
equality in equation (27). By substituting the definitions of V(s),
G(s), and U(b) into this equation, multiplying by (—25b) and in-
tegrating with respect to b, we get the following elegant final
expression for the function z(b):

(27)

1 (' Lp)ab
= %. (28)

Using equation (23), we can rewrite this in terms of the functions
F(L) and b(L) as

AV [F L'EL)dL

By Jo /BL') - PA(L)

3.4. Loop Energy

Ztop(L) =

One of the main goals of this section is to address the en-
ergetics of the magnetized corona. Relevant issues include the
energy distribution of flares as well as the torque on the disk due
to the coronal magnetic fields. In order to be able to address this,
we must first determine the energy, £(A), associated with a loop
of type A.

The loop energy is given by the work done by the footpoints
against magnetic forces as the loop’s footpoint separation (i.e.,
the projected length of the loop) is increased from zero to its

STATISTICAL THEORY OF ACCRETION DISK CORONA 615

present value L. Since we regard P(z) as isotropic, the energy
depends only on the length but not on the orientation of the loop:

L
E(A) = EL) = /0 fill)dL'. (30)

Here, f5;,(L) is the magnetic force on each of the two footpoints;
it is proportional to the horizontal magnetic field Bpo(z = 0) at
the disk surface:

BzB hor

AU
Jpl) = e anor(z = 0) = FBhor(Z =0;1), (31)

z=0

where AW is the magnetic flux carried by the loop and ano(z = 0) =
AW/B.(z = 0) is the area of the loop’s footspot on the disk surface.?
Thus, we have

L
ey =LY / Bhor(z = 0;L') dL. (32)
47 0

Another quantity of interest is the magnetic energy Epagn con-
tained within the loop:

B(l
Eren = [ a) % dl (33)

where the integral is taken along the loop from one footspot to
the other. Using flux conservation, AU(/) = a(/)B(l) = const.,
this energy can be written simply as

Enmagn = % / B(l)dl. (34)

This expression actually has a very simple physical meaning. The
integral [B(/)dl is the circulation of the magnetic field along the
loop; according to the Ampere’s law, this is just the total surface
current flowing around the loop in the perpendicular direction.
Thus, the above expression for gy is just a manifestation of
the well-known result that the magnetic energy of a current circuit
is proportional to the product of the magnetic flux enclosed by
the circuit and its total current.

We would like to remark that £(L) can be viewed as a magnetic
enthalpy, Hmagn. It includes both the magnetic energy Epqgn Stored
within the loop and the work 7 done by the loop on the sur-
rounding gas with a fixed (but not necessarily uniform) pressure
profile:

dE = dHpagn = dEmagn + dW. (35)

This is analogous to calculating the amount of heat O required to
inflate a hot-air balloon at constant atmospheric pressure Py. In-
deed, when the balloon air is heated, the energy is expended both
to increase the internal energy U of the hot air inside the balloon
and to perform work against atmospheric pressure (neglecting
heat losses from the balloon through its skin). Thus, the amount of
heat that needs to be supplied is equal to the change in balloon’s
enthalpy H:

dQ = dH = dU + PydV

1

v—1

2 Note that here, instead of fixing AV and B,(z = 0), we fix AV and the total
magnetic field B(z = 0), which includes the horizontal component.
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where + is the adiabatic index of air. In our case of a magnetic
loop confined by external pressure, the adiabatic index is y = 2.
Therefore, we expect that the total energy that needs to be sup-
plied by the footpoint motions to inflate the loop is twice the
internal magnetic field energy within the loop:

5 = Emagn + W = 2Emagn~ (37)

In Appendix B we demonstrate that this is indeed so.

Note that, in addition to the work # done against the external
gas pressure as the loop expands and increases its cross section,
there is also the work done against the magnetic tension force as
the length of the loop is increased and the work done on the loop
by the external pressure-gradient force. However, as long as the
loop expands quasi-statically, always maintaining its equilibrium
shape, the last two forces precisely balance each other (see § 3.1),
and so their corresponding works cancel out.

Using the formalism developed in the previous subsections,
we can now easily calculate the energy associated with a given
loop. Substituting equation (13) into equation (32) and using
expression (23) for Biop(L'), we get

AT L A\IJZ L 00 _
L) =—— / Biop(L')dL" = / / F(L")dL" dL'.
T Jo 0 ’

4
(38)
The total magnetic energy in the corona is then
| I
Eu=y [ PG
0
AY? [ L o
=3 / dL/ dL’/ dL" F(L)F(L")
0 0 '
A\I/2 00 L _ _
== / dL/ dL' L'F(L)F(L"). (39)
0 0

It is instructive to consider a case in which F(L) has a power-
law tail, ' ~ L™, truncated at some large Ly,x > H. Then, as
can be seen from equation (38), the energy of the largest loop,
E(Lmax), 1s almost independent of L, for oo > 2, but starts to
grow as L2 for < 2. Inasimilar manner, from equation (39)
it follows that the total coronal energy becomes dominated by the
large-L tail if (L) drops off sufficiently slowly, i.e., @ < 3/2.In
this case the total energy scales with L,x as Ey; o Lfn;f“ and may
become much larger than the potential magnetic field (whose
characteristic magnetic scale height is of order /). Physically, we
expect L, to be at most about the local disk radius, 7, so that
E\ is bounded.

Finally, let us consider the angular momentum transfer by the
coronal magnetic field. The torque due to a single loop is given by

AW Boor AyAr
4o onerl T
B AUB,

= o biop(L)L sin 26, (40)

AGL,0) = —

and hence the total torque per unit disk area is

A
G=-—

B i,
g 0 / / dLdO F(L,0)bop(L)L sin26. (41)
s

Let is again consider the truncated power-law example, F' ~
L=® Forafixed degree of anisotropy, e.g., a fixed value of the
characteristic angular scale |sin Oy, | at which the function a(6)
has a minimum .y, the torque becomes dominated by large
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loops if iy, < 3/2, similar to Ey (where we used eq. [23]).
It then scales as L2 and thus may become by a factor
(Lmax/H >~ > 1 larger than the usual torque exerted directly
by MRI turbulence within the disk, assuming that the magnetic
field at the base of the corona is comparable to that in the disk.
In reality, however, a decrease in o i, may come hand in hand
with an increase in the degree of anisotropy of the distribution
function F(L, 0) (see § 5.3), manifested as a simultaneous de-
crease in [sin Oy |. If this is the case, the torque amplification
will not be as strong.

4. THE LOOP KINETIC EQUATION

In this section we discuss how to calculate the loop distribution
function. In particular, we construct the loop kinetic equation that
governs the evolution of this function.

4.1. Physical Assumptions of Our Model

In order to build a quantitative model of the magnetic field in
the corona, we need to make some specific assumptions about the
most important physical processes that govern the life of indi-
vidual coronal loops, including their interactions with each other.
These assumptions are the main building blocks of our model; we
shall discuss them in this section:

1. The Alfvén velocity in the corona is much faster than both
the disk’s rotational velocity at the given radius and the thermal
velocity of the coronal gas; therefore, the corona is considered to
be in a slowly evolving force-free magnetostatic equilibrium at all
times and almost everywhere (except for rapid rearrangements
due to reconnection events, see below).

2. The disk is geometrically thin, with the gas scale height
much smaller than the distance from the central object, H < r.
This gives us an important small parameter that can be used in
the analysis. For example, this assumption gives us an “inertial
range” of spatial scales much smaller than » but much larger
than H. This enables us to perform an analysis that is local in 7.
In particular, this means that we can neglect geometrical effects
resulting from cylindrical geometry when considering the flux-
loop expansion process. Note, however, that the validity of the
thin-disk assumption is questionable close to a black hole ac-
creting near its Eddington limit.

3. The disk is differentially rotating (e.g., Keplerian). As a
result, coronal loops with radially separated footpoints are subject
to continuous stretching in the toroidal direction. This generates
toroidal magnetic field whose pressure inflates the loops and ul-
timately leads to the creation of a vertically extended corona (see
below).

4. Atany given time, the shape and the overall height of each
loop are determined by the magnetostatic equilibrium of the loop
as if it were confined by a stratified atmosphere with certain ex-
ternal isotropic pressure P(z). In turn, this pressure represents the
effective magnetic pressure of all the neighboring loops, and we
shall denote it P = B?(z)/8n. This equilibrium shape is main-
tained at all times, since it adjusts on the Alfvén timescale, which
is assumed to be much faster than the disk rotation.

The disk is turbulent due to the usual internal MRI (as
opposed to coronal MIR, which may act simultaneously). The
characteristic spatial scale of the turbulence is /A, and the char-
acteristic timescale is Q2g. The important effects of the disk tur-
bulence on the corona are

A. Flux Emergence plays a very important role in the solar
corona and, by analogy, is also believed to be important in the
case of the disk Galeev et al. (1979). We generally expect the
emerging magnetic loops to be relatively small in size (of order
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reconnection point

y

Fic. 5.—Reconnection between two loops as a binary process.

the disk thickness A') and to have typical magnetic fields of order
ai?Beq, where the dimensionless parameter ags ~ 0.01-0.1
is the Shakura & Syunyaev (1973) viscosity coefficient and Beq
is the field strength that corresponds to equipartition with the
gas pressure inside the disk. In addition, numerical studies of
MRI turbulence show that the toroidal field in the disk tends to
be larger than the radial field by a factor of 5—10. Thus, flux
emergence is expected to be anisotropic, with newly emergent
loops elongated in the toroidal direction by a factor of a few.

B. Again, similar to the Sun, the disk turbulence leads to a
two-dimensional random walk of the coronal loops’ footpoints
on the disk surface. We expect this random walk to be charac-
terized by spatial and temporal scales of the order of Hand Q'
respectively. However, similar to the process of flux emergence
discussed above, the random walk, in general, may be aniso-
tropic, with characteristic steps in the azimuthal direction being
somewhat larger than in the radial direction.

6. In our model, two loops may reconnect with each other,
forming two new loops (see Fig. 5). Thus, reconnection represents
a binary interaction between individual magnetic structures, anal-
ogous to binary collisions between particles in a gas.

We shall assume that, once triggered, a reconnection event
(a flare) happens very quickly, essentially instantaneously on
the orbital timescale. This assumption can be justified by noting
that the corona is assumed to be a very low density, and hence
collisionless, environment. Therefore, reconnection there pro-
ceeds in the Petschek-like fast collisionless regime, enabled by
anomalous resistivity or by the two-fluid (Hall-MHD) effects.
The characteristic reconnection timescale is then only by a factor
of 10—100 slower than the Alfvén crossing time 74. Thus, since
we assume that V5 > P, itis reasonable to expect that the typical
duration of coronal reconnection events may still be fairly short
compared with the orbital timescale Q™. Then, to the extent that
Q! is the main dynamical timescale in our problem, character-
izing differential rotation, flux emergence, and turbulent random
walk, we can, for the purposes of our study, regard reconnection
between loops, once triggered, as being essentially instantaneous.
Thus, we arrive at a picture in which magnetic loops evolve slowly
(i.e., on the orbital timescale), but from time to time they suddenly
and instantaneously reconnect. This picture is similar to the ob-
served behavior of solar coronal loops, where the characteristic
reconnection (or flare) time is typically much shorter than the
typical loop lifetimes. Thus, from the standpoint of viewing the
corona as an ensemble of many loops, reconnection events can be
regarded as relatively infrequent binary collisions between loops,
analogous to the binary collisions between particles in Boltzmann’s
gas. An important corollary from this is that the footpoints of the
loops do not have time to move significantly during the reconnec-
tion event. As we shall see in § 4.2, this will give us the rules that
determine the footpoint separations of newly formed loops. We
shall also assume that these newly formed loops quickly assume
their equilibrium shapes (see above).
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4.2. The Loop Kinetic Equation

Based on the above assumptions, we shall now work out
an evolution equation for the loop distribution function F. We
shall call this the loop kinetic equation (LKE). This equation
should have the following terms, reflecting the relevant physical
processes:

1. Flux emergence/submergence acts as a source/sink of new
coronal loops. It can be modeled by a source term, S(.A), that de-
scribes the rate at which the loops emerge into the corona, their
characteristic sizes, magnetic field strengths, etc. (or, in a more
elaborate model, by specifying the distributions of these quantities).
Specifically, one can add loops at some characteristic “injection
scale,” somewhat larger than the disk thickness H, and remove
very small loops, say, of size H or less, as it was done in the model
by Hughes et al. (2003). In addition, in the ADC case, we expect
flux emergence to be anisotropic, with the emerging loops being
by a factor of a few longer in the toroidal direction than in the
radial direction, as indicated by numerical simulations (e.g.,
Hirose et al. 2006).

An alternative way to take flux emergence into account is
via the boundary conditions for 7' at small scales (of order H).
This is the view adopted in our model. This choice is justified
by arguing that the population of smallest loops comprising the
“magnetic carpet” is predominantly determined by a detailed
balance that is quickly established with the magnetic fields in
the disk itself. This process turns over (operates) very quickly and
hence the distribution of the very small loops is basically inde-
pendent of what happens in the larger scale corona.

2. Random footpoint motions due to the disk turbulence. Since
we expect the characteristic steps of this random walk to be rela-
tively small (of order H, see § 4.1) compared with the sizes of most
loops under consideration, we can employ a Fokker-Planck—like
approach to this process. This results in a diffusion operator with
the diffusion coefficient of the order of the Shakura & Syunyaev
(1973) a-viscosity coefficient: D ~ asge,H ~ assQH?. In gen-
eral, however, this diffusion may be anisotropic, with D being a
tensor (e.g., a diagonal tensor with Dy, > D,,.). We expect the
effect of the random walk to be relatively unimportant for large
loops, L > H.

3. Keplerian differential rotation leads to a secular evolution
of Ay,

— = ——QAr. (42)

Here, Q2 = Qx(r) can be regarded as constant because we con-
sider spatial scales that are small compared with the disk radius,
Ar < r. In the loop kinetic equation this process is described by
an advection term, (3/2)QAr(0F/0Ay).

4. Coronal MRI backreaction term Fy,: in a geostrophic ap-
proximation, this is obtained by balancing the magnetic force
on the footpoints (per unit area) with the Coriolis force (also per
unit area) due to the rotation of the loop it induces:

Bthor
2 —— = 2%[Q X bvpi], 43
. [€2% bvpic] (43)
in which wyy, represents the departure from the Keplerian rotation
velocity.
5. Interaction of two loops by reconnecting with each other,
yielding two new loops. This process is described by a binary
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collision term F. This is the most nontrivial term and we devote
the entire next subsection (§ 4.3) to a detailed discussion of it.

At the end, we arrive at the following general form of the
kinetic equation for the loop distribution function:

OF H? H?
E(Ara Ay, t) =S(Ar, Ay) + <DrrW + Dyy(’)AyZ)F
3

oF . .
—QAr—— 4+ Foir + Frec. 44
+ 3 raAy + Fokr + ec ( )

The simplest meaningful case of this equation is when one neg-
lects the source, diffusion, and feedback terms and looks for a
steady state that is produced by the balance between Keplerian
shear and reconnection:

3 OF .
EQAI"a—Ay = Frec~ (45)

Our approach will thus be analogous to, and can be regarded
as an extension of, the previous work by TP96 whose main goal
was to study the formation of large magnetic structures via the
reconnective “inverse cascade” in the corona. Following them,
we also represent the coronal magnetic field by an ensemble of
flux loops described by a distribution function. However, our
model is more general and uses more realistic physics. We take
into account a number of effects ignored in TP96 such as inflation
of the loops as they are stretched by the Keplerian differential
rotation. Also, in their model reconnection was taking place only
at the disk surface and thus one of two newly reconnected loops
was vanishingly small and was assumed to just disappear; as a
result, the reconnection process did not conserve the number of
loops. We, on the other hand assume that reconnection occurs
higher in the corona, and hence two new loops form and the
loop number is conserved (similar to the model by Hughes et al.
[2003]).

4.3. Reconnection Described as a Collision Integral

Two loops .4 and B may interact by reconnecting with each
other and forming two new loops C and D as aresult (see Fig. 5).
Following TP96 we shall describe this process by a nonlinear
binary-collision integral, similar to the collision integral in the
Boltzmann kinetic equation. In reality, of course, interaction be-
tween loops is more complicated and so such a description is over-
simplified. Moreover, magnetic loops fill up the entire coronal
space, and so they resemble more a nonideal liquid rather than
an almost ideal rarefied gas with infrequent binary encounters.
Nevertheless, we believe that this binary-collision representation
of reconnection can lead to some valuable physical insight into
the complicated dynamics of the coronal magnetic field.

The Boltzmann collision integral can be split into two: the source
term and the sink term. The sink term Foy —(A) describes the
rate of reduction in the number of loops of a given type A due to
reconnection between these loops and all other loops. The source
term Fop1 4 (A) describes the rate of increase in the number of
loops of type A when they are a product of reconnection of other-
type loops. By “type” we here mean a set of loops with the same
values of their primary parameters (L, 8) or (Ar, Ay). Thus, each
of these terms is a quadratic integral operator, with a kernel that
depends both on the types of the two loops and also on their
relative position (see below). Thus, we can write the reconnection
term schematically as

Frec(A) = Frec,f(-A) + Frec,Jr(-A)a (46)
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where
Freo(A) = — / dB 0.usF(AF(B), (47)
Fas) =3 [ [ dcapoeoar©F®.  (38)

Here, dB = dArpdAyg, etc. The kernels O 45 in the sink term
and QOc¢p_. 4 in the source term are related via

1
Qus =5 / dC Qap—c- (49)
Using this relationship, the two terms can be combined as

Fecl )= 5 / / dC dD F(D)[Qep— 4F(C) — QADHCF(?S)(]) .)

In order to go from this general expression to a specific op-
erational procedure, we need to formulate the rules that govern
the reconnection process. Indeed, the two new loops C and D
formed as products of reconnection between two loops .4 and B
cannot be arbitrary and certain selection rules must be applied.
More specifically, from the assumption that reconnection is in-
stantaneous on the orbital timescale, it follows that the footpoints
of the reconnecting loops do not move significantly during the
reconnection event. Only the way they are connected to each other
changes. Therefore, the primary parameters (i.e., footpoint sepa-
rations) of loops C and D are uniquely determined by the footpoint
positions of the two incoming loops A and B:

Are=re- —rey =14 — 5y, (51)

Arp =rp- —rpy =715- — T4y, (52)

and similarly for Ayc and Ayp. Here, A, and A_ are the positive
and negative polarity footpoints of the loop A, etc. Mathemat-
ically, these rules play a role similar to the momentum and energy
conservation conditions for particle collisions in kinetic theory
of gases; they enter as d-functions in the interaction integral in our
loop kinetic equation. Thus, one can easily see that the parameters
of the new loops depend not only on the parameters of the old
loops, but also on the positions of A and B relative to each other
(see below).

The kernel Q 45 in equation (47) is the probability rate (i.c.,
probability per unit time) that two loops of types A and B will
come together and reconnect. Thus, Q 45 describes the rate of
reconnection events (the number of such events per unit time).
This should not be confused with the concept of “reconnection
rate,” a widely used term in reconnection research with a com-
pletely different meaning.

Now let us discuss on which physical parameters O 453 should
generally depend. Whereas TP96 just took Q45 = const., we
want to develop a more realistic and more sophisticated model,
taking into account several important factors. First, notice that
Q45 has dimensions of [cm? s~!]. Based on dimensional argu-
ments, it should then be proportional to the characteristic rate at
which the coronal magnetic field is reconfigured. In addition, it
should also reflect the fact that larger loops have larger ““inter-
action cross section” (see below), and thus should be roughly
proportional to the squares of loop sizes.

Let us first address the characteristic reconfiguration timescale.
The only fundamental dynamical timescale in the corona, i.e., the
timescale on which the corona, seen as an ensemble of elementary



No. 1, 2008

coronal structures, rearranges itself, is the orbital time, 0! (or the
inverse of the shear rate, 3/2€2, which is not independent). This
means that, if we represent the evolution by a sequence of discrete
steps, each step representing a noticeable change in the relative
position and/or orientation of the coronal elements, then the most
appropriate choice for duration of these steps is of order Q7!
Therefore, in general, O should scale with €2. Next, if we follow
a given magnetic element, at each new step there will be a certain
probability £ < 1 that the resulting new magnetic configuration
around this element becomes favorable for reconnection of this
element with another. We shall treat x as a constant number,
independent of the loops primary parameters. Thus, the overall
rate at which the loops are disrupted through reconnection with
other elements should be proportional to «2:

Oup = KQ0 45, (53)

where we introduced the “reconnection cross section” o 45.
The cross section o 45 should in some way scale with the loop
sizes. It involves contributions from all possible relative posi-
tionings of the two interacting loops for which the two loops
“effectively intersect.” We shall describe this relative positioning
by two impact parameters, b and b, defined as the offsets be-
tween the centers of the two loops in the direction parallel and per-
pendicular to loop A, respectively. We shall assume that once the
impact parameters are in a range such that the two loops effec-
tively intersect, the probability that these loops will reconnect is
constant, independent of their positions or their parameters. Fur-
thermore, for simplicity we shall assume b and b, to be uni-
formly distributed independent random variables. Thus, o 45 is
just equal to the “interaction area” in the (b),b,) space that
corresponds to an effective intersection of the given two loops:

oup = /daAg = // dbydb, . (54)

But what do we mean by “effectively intersecting”? If the two
loops are approximated by their central lines (one-dimensional
objects), then the set of values (b, b, ) for which they intersect is
also one-dimensional (a line segment), and thus has measure zero
in the two-dimensional (b, b, ) space. In other words, the prob-
ability that two randomly drawn lines intersect is zero in the three-
dimensional space. Therefore, to get a meaningful result, we need
to take into account finite thicknesses of the loops. In particular,
we shall say that two loops effectively intersect when the closest
distance between their central lines is less than a certain fraction
of the combined loop thicknesses at the intersection height.
Operationally, for a given value of b, say, we can introduce the
y cross section o 45,1 (b)) as the spread in the values of b, which
result in an effective intersection of two given loops A and 5.
We can then write

oAB = /UAB.L(bll)dbw (55)

where the integral is taken over the range of impact parameters
b for which an intersection between loops A and B is at all
possible. Correspondingly, the sink-term part of the reconnection
integral can be written as

Frec,_(.A) = —HQ/ aB db“ UAB_J_(bH)F(.A)F(B). (56)

Now let us consider the source term (48). Employing the ar-
guments given earlier in this subsection, we introduce the cross
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section for two given loops C and D to reconnect giving a loop A
as a result: Qcp_. 4 = KQoep_.4. We can then write

. Q
Fans( =3 [ [ acapocs_arcr®). (57

The D integral in this equation is taken over all the loops that
canyield a loop of type .A as a result of reconnection with a loop
of a given type C. Note that, whereas one did not need to know
reconnection product loops to compute the sink term (56), in order
to calculate the source term, this knowledge is in fact necessary.
It is contained in our “‘reconnection rules,” such as those given
by equations (51)—(52). For definiteness, let us consider the case
when the resulting loop A starts from the plus-sign footpoint of
loop C and ends at the minus-sign footpoint of loop D. Then,
for given C and A, there is a well-defined range of impact pa-
rameters b for which one can find one (or sometimes two) loop
D = D4 _c(b)) that intersects loop C and ends at the end foot-
point of loop A. Thus, in principle, for a given b| one can for-
mulate the rules that relate the primary parameters Arp and Ayp
to those of loops C and .A. We shall denote these relationships by
Arp=€(b,) and Ayé’c(bu). In general, there may be one or two
such solutions.

Recalling now that flux tubes have a finite thickness, we have,
by analogy with equation (55),

oepoa =2 /de ocp, L (b|‘>5[p —Dac (bH” ) (58)

where 8[D — Da_cb))] = 6[Arp — Arp=C(bIS[Avp —
Ayﬁ‘c(bu)]. The factor 2 accounts for the fact that in the pre-
ceding paragraph we considered only one half of all possible
configurations, requiring the starting footpoint of loop .A to be
the starting footpoint of loop C. For each such configuration
there will also be an identical contribution from interchanging
loops C and D.

_ Substituting this cross section into our expression (57) for
Feon+(A), and using the é-function to integrate over dD =
dArpdAyp, we get

Fc011.+(~’4) =
R / / dCdby oep, .1 (b)) FCOF[Dac(by)]- (59)

Combining equations (56) and (59), we can write

Free(A) = £Q / / dCdb F(C)
X {F[Da-c(by)]ocp, o (b)) —F(Aoac (b))} (60)

4.3.1. Effect of Finite Loop Thickness

For a given value of b, one first finds the coordinates
[#()), (b)), z(b))] of the point where the central lines of the
two loops would intersect. After that, one calculates the L extent
of each of the two loops at this point, which hence gives one
oa5.1(b)).

When doing this, one should take into account the following
important effect. If the loops have no internal twist, as we assume
here, the longitudinal magnetic field is approximately constant
across a loop and is roughly equal to the characteristic magnetic
field B(z) at a given height z. Then, by flux conservation, the
cross section of the loop (normal to its central line) varies along
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its length, and, in particular, may increase greatly at large
heights if B(z) drops off rapidly. More precisely, approximating a
loop’s cross section at a given height z as a circle of some radius
d(z), we can estimate this radius as d(z) ~ [AV/7B(z)]'/? =
do[B(z)/Bo] " Aslong as the loop is slender, d < L, this should
be a good approximation. Thus, if the intersection point lies high
above the disk, so that B(z) < By, the characteristic loop thick-
ness is much larger than near the disk surface. Consequently, the
reconnection cross section is increased, which has important im-
plications for the “inverse cascade” of magnetic loops in the
corona. It is also interesting to note that this process is controlled
by the self-consistent field B(z). [Note that in the case of twisted
loops this effect is not as profound and a more accurate approxi-
mation is probably given by d(z) ~ dy = const. (see § 6.2).]
Thus, typically we expect 0 45, to scale as

o5 (b)) ~2d[z(by)]
AT By

B[z(b))]

For example, if B is the smaller of the two loops, we expect the
typical interaction height to be of the order of this loop’s height
Zp. Correspondingly, we expect o451 ~ dob~V*(Zg), where
b(z) = B(z)/By. This estimate for 0 45 1 (b)) will be roughly valid
for almost the entire allowed range of b, which is of order 4A7rg.

To sum up, larger loops have larger cross sections for recon-
nection, for two complementary reasons. First, the cross section
is enhanced because larger loops have larger range of impact
parameters (in the radial direction, say) for which intersection
of their central lines is possible. Second, larger loops extend to,
and may interact at, larger heights, where the mean magnetic
field is weaker and hence where the loops become fatter. They
thus have a greater chance of overlapping with each other. As a
result, the reconnection cross section scales with the size Lz of
the smaller of the two loops as

~2 =

=1ECN) (e

oas ~ Ldob™V*(Zs), (62)

[for Lg > d(Zg)]. We thus see that the function B(z) affects the
evolution of the loop distribution function. Since, according to
§ 3.2, B(z) is itself determined by the distribution function, this
means that determining these two functions together in a self-
consistent way requires an iterative procedure.

What is important here, is that larger loops have a tendency to
reconnect with each other quickly, probably leading to a rapid
“inverse cascade” to even larger loops. In addition, the fact that
reconnection with large loops cannot be neglected suggests that
a Fokker-Planck-like approximation to the reconnection term
will not work. This is because reconnection events that lead to
large changes in loop parameters are important and so our col-
lision integral cannot be described by a differential diffusion-like
operator.

On the other hand, whether or not reconnections with numerous
low-lying small loops dominate the overall evolution of the size
and shape of a given large loop, they may, under some circum-
stances, provide an important contribution to the heating of the
large loop. This is perhaps especially relevant in the solar corona,
where the Keplerian shear is absent and the loop distribution
function is relatively steep (see § 5.3), with a lot of very small
loops forming the so-called magnetic carpet. Then, most of the
reconnection heating events involving a given large loop will
take place at very small heights close to its base, in agreement
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with the modern interpretation of observations of loop heating
in the solar corona (e.g., Aschwanden et al. 2007).

5. NUMERICAL SOLUTION
5.1. Numerical Setup

We solve the LKE numerically and obtain a steady state solu-
tion. For simplicity we leave out the turbulent diffusion term, the
coronal backreaction term, and the source term (flux emergence is
then treated via the boundary condition at small scale, see § 5.2).
Thus, we include only the two processes which we believe are the
most important: Keplerian shear and reconnection between loops.
Correspondingly, we aim here at investigating the effect of the
relative importance of these two processes on the steady state loop
distribution function.

In the numerical implementation we work in the (L, 6)-
parameter space where L = (Ar2 + Ay?)"/? is the distance be-
tween the footpoints and 6 is the angle the vector (Ar, Ay) makes
with the toroidal direction, measured clockwise: tan = Ar/Ay.
We use a grid that is uniform in 8 (between 0 and 27), but loga-
rithmic in L. The L grid spans from Ly, = 1 to some Ly > 1
(usually we take Ly, to be 10 or 20) in length units such that
H~1.

The advection term resulting from Keplerian shear is very
easy to implement, we just use one-sided derivatives.

The reconnection collision integral is obviously more com-
plicated and we devote the rest of this subsection to our numer-
ical implementation of it. At each time step we go over all pos-
sible pairs of loops A and 5. Furthermore, for each given pair
we go over all possible reconnecting configurations, distinguished
by the impact parameter b|, defined as the displacements be-
tween the centers of the two loops in the direction along loop .A
(see § 4.3). Thus, at each time step, we are performing a five-
dimensional (5D) integration, which makes increasing resolution
extremely numerically costly. We found, however, that numer-
ical convergence is very good and relatively modest resolution
suffices. To study numerical convergence, we performed cal-
culations with N, = 20 and 40 points in log L, Ny = 20, 40, 60,
and 80 points in 6, and 30, 50, or 100 points in b). We found the
resulting F'(L, §) to be essentially unchanged, although small
values of x required a higher §-resolution for convergence (see
below).

For simplicity, in our treatment of reconnection, we assume
the loops to be semicircular in shape, instead of using equi-
librium shapes discussed in § 3.1. This simplification has two
benefits. First, since the shapes are described by relatively simple
analytical expressions, we can derive explicit analytical relation-
ships expressing the parameters of the two product loops in terms
of the parameters of the interacting loops and the impact pa-
rameter (we call these relationships the “reconnection rules”).
Having such expressions in an explicit form greatly simplifies
the numerical procedures.

The second advantage of the semicircular approximation
stems from the observation that, because all the loops have the
same shape, the reconnection rules essentially depend only on
the ratio of loop sizes, whereas their dependence on the absolute
loop size is a trivial rescaling. Likewise, the reconnection
process is, by itself, isotropic, i.e., does not depend on the ab-
solute orientation of the loops, only on the angle between them.
This enables us to reduce the analysis of reconnection between
two given loops A and B to considering a template that corre-
sponds to the given angle between the loops and the given length
ratio Lp/L 4. That is, we can analyze reconnection between any
two loops in a rotated and rescaled system of coordinates, (x', y"),



No. 1, 2008

in which one of the loops (loop A for definiteness) is in the pos-
itive x'-direction, i.e., has ¢y = 7/2 and has unit length, L', = 1.
In practice, we first (even before we start the evolution of LKE),
create a lookup table describing the reconnection rules for inter-
action of this loop .A’ with all other loops B’. The lookup table is
3D, two of the coordinates being 92; and Lg, and the third coor-
dinate being the rescaled impact parameter b\ll ; the latter lies within
the range from —(1 + Ax})/2 to (1 + Axg)/2, where Axy =
Lj; sin 0. For each given 6, Lj; and b, it is just a matter of
simple algebra to figure out the perpendicular displacement b’
corresponding to the intersection between the semicircular loops.
Simultaneously, one finds the 3D position of the intersection point
between loops A" and B’ for given b/ (including the height of the
reconnection point). One can then readily deduce the parameters
of the two product loops C' and D'. It is easy to see that the
problem reduces to quadratic equations and hence for each 6},
L}, and b"‘ there may be zero, one, or two solutions.

During the time evolution we use this table as follows. For
each given pair of loops A and B we find their corresponding
template pair by rotating them by 6 4 — 7/2 and rescaling the loop
sizes by L 4. We also rescale the impact parameter by L 4, i.e.,
b| = by /L 4. We then use the template table to find the two tem-
plate product loops and we transform them back by multiplying
by L 4 and rotating by 7/2 — 6 4 to find the actual product loops C
and D. Having a grid uniform in # and log L makes this procedure
especially convenient and straightforward.

Once the product loops are found, one also needs to figure out
the reconnection cross sections corresponding to given A, B,
and b"‘. In accordance with the above discussion, do AB(bﬂ) is
proportional to db| = L4(1 + Axy)/N, and to the loop com-
bined deprojected thickness db’, at the intersection point. Apart
from simple geometrical projection factors, db’, is proportional
to d(z) ~ dy[Bo/B(2)] 12 \where z is the height of the reconnection
point above the disk. This factor enhances the reconnection prob-
ability for large loops intersecting at large heights. Since B(z)/By
itself depends on F(L, #), this procedure requires iteration. Once
the reconnection cross section o 45(b}) is found, one can proceed
to evolve the number of incoming (A and B) and product (C and
D) loops. Namely, F'(A)d.A and F(B)dB are reduced by

F(AF(B)dAdBL 4 db)| k00 45 (b",) At, (63)

and F(C)dC and F(D)dD are increased by the same amount at
each time step At. Finally, we varied the initial conditions and
found that our resulting steady state solutions are insensitive to
them.

5.2. Boundary Conditions

For various physical reasons, we expect our model to break
down at both small scales and large scales. We thus need to dis-
cuss how to prescribe the boundary conditions for the LKE at both
of these scales.

At small scales, L ~ H, the model is expected to become in-
valid because the magnetic field is no longer force-free, as plasma
pressure starts to become dynamically important at small heights.
In addition, the characteristic thickness of magnetic structures
near the disk surface is expected to be of order H and hence small
loops with L ~ H are not going to remain slender as our model
assumes. Thus, we need to understand what is a plausible way
to describe these small loops. At small scales the dynamics of
magnetic loops is strongly affected by rapid flux-exchange (e.g.,
flux-emergence) processes with the turbulent disk. One can there-
fore argue that the overall distribution of the smallest loops is
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largely determined by the detailed balance equilibrium that is
rapidly established between smallest loops and the turbulent disk.
Characterizing this intense interaction with the disk turbulence
and calculating the small-scale distribution function is completely
beyond our present model. It would require thorough under-
standing of 3D MHD turbulence in stratified disks with simulta-
neous actions of the MRI and Parker instability (Tout & Pringle
1992); most likely, this task will be accomplished using sophis-
ticated numerical simulations. However, what matters for our
model here is that we expect that the number of small loops be
essentially insensitive to what happens to larger coronal loops.
This means that we can mimic the disk-corona interaction by
setting up a Dirichlet-type boundary condition at small scales,
i.e., by prescribing the distribution function at some small-cutoff
scale Lyin ~ H:

F(L = L, 9) = F1(0). (64)

(In our model we set Ly, = 1.) Notice that F(#) is in general
expected not to be isotropic because emerging loops will be pref-
erentially azimuthally elongated (|sin 6| << 1). In the present sim-
ulations, however, we take it to be isotropic, F';(f) = const.

Our model also breaks down at large scales. In particular, when
a loop’s size becomes comparable to the disk radius 7, the local
Cartesian geometry adopted here is no longer applicable, and
toroidal effects become important. This leads to a much faster
expansion of stretched loops, resulting in a complete opening of
the field, as discussed in § 2.2. In the future, we plan to implement
a physically realistic way of treating the opening of large loops
by incorporating open field lines into our model (see § 6.3).

In the present model, however, we just introduce some large
cutoff scale, Liax, and we set boundary conditions at this scale.
We experimented with two types of boundary conditions: in one
case, we set F(Lma) = 0, i.e., we simply remove all loops that
reach the cutoff scale. In the other case, we just limit the growth of
loops beyond Lp,y; i.€., as soon as a loop’s length exceeds Ly,
we reset it back to Ly,x. This leads to a gradual pileup of loops
near L., but does not affect the loop distribution on smaller
scales; in particular, it does not change the power-law tail for sizes
just slightly smaller than L.

5.3. Results
5.3.1. Distribution Function

We performed a series of calculations with several different
values of k (k = o0, 1, 0.3, 0.1, 0.03, 0.02, 0.01, 0.005, and
0.003). Some of the resulting steady state loop distribution func-
tions for our fiducial resolution N; = 40, Ny = 80, and for the
large-scale boundary condition F(Lp,x, ) = 0, Linax = 10, are
presented in Figures 6—8. In particular, Figures 6 and 7 show (in
log-log coordinates) F as a function of L for purely radial loops
(6 = 7/2) and purely toroidal loops (8 = 0), respectively. In the
case k = oo (Keplerian shear turned off), the distribution func-
tion is isotropic. This is of course expected, since loop-loop
reconnection—the only process determining the distribution
function in this case—Dby itself is independent of the absolute ori-
entation of the reconnecting loops. As the frequency of recon-
nection events relative to shear, quantified by &, is decreased, a
given loop (especially if it has a large | Ar|) experiences, on av-
erage, larger stretching in the toroidal direction by the shear before
it undergoes reconnection with another loop. As a result, the loops
become predominantly azimuthal and the loop distribution func-
tion becomes more and more anisotropic: F(f = 7/2, L) steepens,
whereas F(§ = 0, L) becomes shallower with decreasing .
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Fic. 6.—Distribution function for purely radial loops (6 = 7/2), for di-
mensionless reconnection parameter k = 1.0 ( plus signs), 0.3 (crosses), and 0.1
(asterisks).

Because our problem lacks a preferred length scale between
Linin and L.y, we find that, along each ray 6 = const., F(L) is well
described by a power law with the orientation-angle—dependent
exponent:

F(L,0) ~ L™ ®. (65)

Figure 8 presents the function o (#) for « = 1, 0.3, 0.1, and 0.03.

Finally, in order to estimate the total magnetic energy in the
corona and the total magnetic torque (see § 3.4), one needs to
know the f#-integrated distribution function,

2T
F(L) = /0 F(L,6)d6. (66)

In Figure 9 we plot F(L) for x = 1.0, 0.3, 0.1, 0.03, 0.01, and
0.005 in log-log coordinates. In general, of course, one cannot
expect a f-integral of exponents L~*® to be itself a power law
of L. However, we find that the integral is strongly dominated

0
X x x =
xm;i: ﬁ\x:x*x 0=0
L
I°g1oF 1; e 2
X % -
-1t Ty, mlrt 1
+§f‘>&)6 ***
+\*:ixx *x*
% —2.8x
% F~L *x
% *
X *
-2 ke *
)r\a»\X\x
+ K=1.0 X
X K=01 FN -31 = xX
* K=0.01 T
=3 ‘ ‘ ‘ ‘ 1
0 0.2 0.4 0.6 0.8 1
IogmL

Fig. 7.—Distribution function for purely toroidal loops (6 = 0), for £ = 1.0
(plus signs), 0.1 (crosses), and 0.01 (asterisks).

Fic. 8 —Power-law exponent «,(#) for x = 1.0, 0.3, 0.1, and 0.03.

by the range of values 6 corresponding to the ridge in F(L, 0),
and so a power law F(L) ~ L~4() is actually a reasonably good
approximation, especially for relatively large values of x. Be-
cause the power-law fit is not ideal, there is some degree of
uncertainty in determining the value of a; we estimate the char-
acteristic error to be <0.1.

The dependence of the power-law exponent & on the recon-
nection parameter  is plotted in Figure 10. We find that when
reconnection is strong compared with Keplerian shear (x 2 0.2),
the power-law exponent stays close to 3.1, independent of «. This
is because, as long as the Keplerian shear can be neglected, re-
connection is the only term on the right-hand side of the LKE.
In this case, « cannot affect the steady state solution, it can only
regulate how fast this solution is achieved. As & is decreased,
however, the Keplerian shear term becomes important and a(x)
starts to decrease. We find that its overall behavior can be ap-
proximated by a(x) ~ 3.1 = const. for Kk 2 0.2 and &(x) ~
3.55 4+ (1/3) In k for k < 0.2. Correspondingly, we expect a(x)
to crosses the critical values 2 and 3/2 (see § 3.4) at x; ~ 0.01
and k3, ~ 0.002, respectively. As a reminder, @ < 3/2 means
that the total magnetic energy of the corona is dominated by the
largest loops.
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Fic. 9.—Orientation-averaged loop distribution function F(L) for x = 1.0,
0.3, 0.1, 0.03, 0.01, and 0.005.
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Fi6. 10.—Power-law exponent & for the orientation-averaged loop distribution
function F(L) ~ L%, as a function of . The dotted horizontal lines at & = 2 and
3/2 correspond, respectively, to the critical values at which the magnetic energy of
the largest loop, £(Lmax), and the total magnetic energy in the corona, Eyy, start to
become dominated by the large-scale cutoff Ly, (see § 3.4).

Finally, although most of our runs were done with L,y = 10,
we also conducted some runs with L,x = 20. We found the dis-
tribution function to be essentially the same; the power law just
extended further in the L,y = 20 case but the slope and the
normalization were unchanged.

5.3.2. Energetics and Torque

Using the computed loop distribution functions, we calculate
the magnetic energy density as a function of height above the
disk, B?(z)/8, and the energy of a loop as a function of its length,
E(L), for several different values of « (see Figs. 11 and 12). We see
that these functions remain essentially independent of « as long as
it is large enough, £ = 0.1), but start changing for smaller values
of k. In particular, we find that for a given value of x, £(L) sat-
urates to a finite value at large L. This is because, although a large
loop occupies a relatively large volume at large z, the magnetic
energy density very high above the disk is very low, and so the
contribution of the large-z part of a loop to its total energy is
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FiG. 11.—Magnetic energy density as a function of height, B?(z)/8, for several
values of the dimensionless reconnection parameter .

Fic. 12.—Energy associated with a loop of length L, £(L), for several values
of the dimensionless reconnection parameter .

relatively small. However, we find that the asymptotic value of
&(L) at large L begins to increase rapidly as « is lowered below
roughly x, ~ 0.01, in agreement with the expectations of § 3.4.

We also calculate the total torque G, transmitted by the coronal
magnetic field and the total magnetic energy in the corona, Et.
We show these quantities as functions of « in Figures 13 and 14.
Since our code is only first-order accurate with respect to the num-
ber Ny of grid points in the §-direction, the finite 6-resolution be-
comes an issue at very small values of x, where the distribution
function is strongly anisotropic. Therefore, to get more accurate
values for the torque and the magnetic energy corresponding to
Ny = 0o, we use linear extrapolation based on the calculations
with Ny = 40, 60, and 80, separately for each value of x (see
Figs. 13 and 14).

We find that, as « is decreased, the coronal angular momentum
transfer G(r) increases steadily as <! for k 2 0.1, as is expected
due to the increased degree of anisotropy of the loop distribution
function. As k becomes <0.1, further growth of G(x) slows
down and becomes G ~ k3. The fact that G(k) is a power law
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FiG. 13.—Coronal magnetic torque G (normalized to AW?/47) as a function
of x in logarithmic coordinates. The small insert shows an expanded view of
convergence with respect to the resolution in the #-direction for x = 0.005
(log k = —2.3). The plus signs mark the values obtained with Ny = 40, 60, and
80 (top to bottom), and the asterisks correspond to the extrapolation to Ny = oo.
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Fic. 14.—Total coronal magnetic energy (normalized to AU?/4) as a func-
tion of x in logarithmic coordinates. As in Fig. 13, the plus signs correspond to
Ny =40, 60, and 80 (fop to bottom), and the asterisks corresponds to the ex-
trapolations to Ny = oo, for each x.

in this range is understandable in light of the discussion at the
end of § 3.4, combined with the logarithmic dependence of a(k)
reported above. We also find that the total magnetic energy in
the corona, E(k), is nearly flat for large values of x, but starts
to increase roughly as k~1/2 as k is lowered below « < 0.05 (see
Fig. 14).

Furthermore, in agreement with the discussion in § 3.4, we find
that both the magnetic torque and the total magnetic energy are
substantially larger in the L;,.x = 20 case than in the Ly, = 10
case for small values to k, whereas they are essentially the same
for both values of L, for larger .

6. DISCUSSION

There are several extensions of our model that we plan to de-
velop in the near future. They include (1) characterizing the co-
ronal field backreaction on the disk motions; (2) including open
magnetic flux; (3) taking into account magnetic twist inside the
loops; (4) incorporating a more realistic prescription for recon-
nection; (5) investigating the mass exchange between the disk and
the corona and its effect on regulating coronal energy release;
(6) studying the interaction between the coronal magnetic field
and a superimposed external large-scale field; and (7) assessing
the implications of our theory for observations, e.g., in terms of
time delay between hard and soft X-ray emission. We discuss
some of these issues in more detail in this section.

6.1. Open Flux Tubes, Outflows, and Net Vertical Flux

In this paper we have assumed that closed loops are the only
magnetic structures in the corona. In principle, however, one
should also consider a population of open flux tubes. If consid-
ered to be force-free along their entire (infinite) length, open loops
exert no torques on the disk (in the nonrelativistic limit) but con-
tribute to the averaged magnetic pressure B*(z) everywhere and
thus prevent it from becoming too small at large heights. Open
tubes are also essential for investigating the role of the corona in
launching large-scale outflows; relaxing the assumption of force-
free fields allows the inertia of the outflow to exert a torque on the
disk along open field lines (Blandford & Payne 1982) by analogy
with the angular momentum loss of the Sun to the solar wind
(Weber & Davis 1967).

Vol. 682

In our model, open loops could be introduced through the large-
scale cutoff for the closed loops. That is, whenever a closed loop
grows to exceeds a certain maximal footpoint separation Ly, it
could be replaced by a pair of open flux tubes of opposite polar-
ities. The large-scale cutoff may be physically associated with the
disk radius, r. It should determine the fraction of magnetic flux that
is open at any given time. The rules that govern the interaction of
open tubes with closed ones and with themselves, are straight-
forward: two open tubes of the same sign do not interact; two open
tubes of opposite sign can annihilate by reconnection, forming
one single closed loop. An open tube can also reconnect with a
closed loop, forming again an open tube of the same sign and a
new closed loop.

In addition to such pairs of positive and negative open flux
tubes, there may also be a net vertical magnetic flux imposed on
the disk by the central object or the ambient interstellar medium.
The radial transport of such externally imposed field across a
turbulent accretion disk is an important problem with significant
consequences for understanding the different spectral states of
accreting black holes (Spruit & Uzdensky 2005), for production
and collimation of disk-driven winds and jets, and for star-disk
magnetic interaction (e.g., Uzdensky et al. 2002a, 2002b), which
is believed to regulate the spin evolution of accreting neutron stars
in X-ray pulsars (Ghosh & Lamb 1978), as well as young stars
(Konigl 1991; Matt & Pudritz 2005). This problem, however, is
highly nontrivial (e.g., Lubow & Spruit 1995; Heyvaerts et al.
1996; Livio et al. 1999; Spruit & Uzdensky 2005), in part because
the effective transport of the large-scale open flux may be greatly
affected by reconnection with the small- and intermediate-scale
closed coronal magnetic loops (Spruit & Uzdensky 2005; Fisk
2005). Incorporating a net large-scale flux into our statistical
model is very straightforward and its overall transport should
come out automatically. We therefore believe that our theoretical
model can be a very useful tool for addressing this problem.

6.2. Twisted Loops

In this paper we have assumed, for simplicity, that coronal
loops have no longitudinal current, and hence have no internal
twist. In a more general situation, however, there may be force-
free field-aligned currents along the loops, generated in response
to certain disk footpoint motions: specifically, rotation of field-
line footpoints around each other.

Internal twist would have two major consequences for our
coronal model. First, the pinch force of the associated longitudinal
current (parallel to the magnetic field because of the force-free
assumption) will tend to reduce the width of loop and its cross
section for reconnection with other loops. One might consider as
a limiting case that the effective thickness of the loop is constant
along its length. There is indeed observational evidence that in the
solar corona bright loops usually have a nearly constant thickness
along their length Klimchuk (2000).

Second, if the loop twist becomes too large, then the entire loop
may become kink unstable and, as a result, the loop makes a
transition to a different equilibrium, where the internal twist is
partially transformed into the global writhe of the loop. That is,
the loop no longer lies in one plane but rather has a twisted,
helical shape. Such S-like loops (so called sigmoidal loops) are
routinely observed in the solar corona (Rust & Kumar 1996).

6.3. Incorporating Realistic Reconnection Physics
(Collisionless Reconnection Condition)

The physics of reconnection is notoriously complex. How-
ever, significant progress has been achieved in recent years,
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and the picture that emerges can be summarized as follows
(Uzdensky 2007b). There are two regimes of reconnection: a
slow (Sweet-Parker) regime in collisional plasmas and a fast
regime in collisionless plasmas. The slow reconnection regime
is just as important as the fast one, since, without it, it would be
difficult for the system to accumulate significant free magnetic
energy before releasing it suddenly via fast flare-like events. For
practical purposes, the actual rate of fast reconnection is not very
critical in our problem, as long as it is faster than the main dy-
namical timescale (i.e., the orbital period). More important is the
fast reconnection onset, or trigger, problem, i.e., the question of
when the transition from the slow to fast reconnection regime
occurs. The physics of fast collisionless reconnection is very
complicated; it involves either two-fluid effects, such as the Hall
effect, and/or anomalous resistivity due to current-driven plasma
microinstabilities. However, despite this complexity, one can for-
mulate a rough criterion for the transition from the slow collisional
to the fast collisionless regime (Cassak et al. 2005; Yamada et al.
2006; Uzdensky 2007a, 2007b). We thus plan to utilize this con-
dition to formulate a physically motivated prescription for han-
dling reconnection. This prescription can then be used directly
in our statistical theory or as a subgrid model in actual MHD sim-
ulations of the corona. In our present model in this paper, the
reconnection parameter x, which for simplicity we take to be
constant, effectively subsumes all this complexity.

The condition for transition to fast collisionless reconnection
involves several physical parameters of the system, including the
ambient plasma density. The dependence of the reconnection re-
gime on the density is critical, since it establishes an important
feedback that the dynamically subdominant coronal gas exerts
on the coronal magnetic field (Uzdensky 2007a, 2007b). In turn,
the plasma density in the corona is determined by the disk-corona
mass exchange processes, such as evaporation in response to
coronal heating, precipitation due to gradual radiative cooling,
and magnetocentrifugally and radiatively driven winds. Coupled
together, disk-corona mass exchange and the transition to fast
collisionless reconnection ensure that the corona is maintained
near the state of marginal collisionality and regulate the overall
level of coronal activity and its intermittency, as well as the ver-
tical distribution of magnetic energy density and of magnetic
dissipation.

These ideas, especially the concept of marginal collisionality,
have recently been successfully applied to the solar corona to
explain the self-regulating nature of the coronal heating process
(Uzdensky 2007a, 2007b) and to the coronae of other main-
sequence stars (Cassak et al. 2008). They also have proved very
useful for providing a natural explanation for the observed optical
depth in the coronae of accreting black holes (Goodman &
Uzdensky 2008).

Finally, especially for studies of the ADC’s interaction with a
large-scale disk wind (e.g., Brandenburg & von Rekowski 2007),
it is important to understand the transition from the force-free
regime to the wind regime in which the plasma inertia becomes
dynamically important (Uzdensky et al. 2002b). This transition
happens near the Alfvén critical surface of the outflow and has a
strong effect on magnetic reconnection. In particular, it is expected
that, beyond the Alfvén surface, open magnetic field lines will
not be able to close back via reconnection (e.g., Uzdensky 2004).

6.4. Flux Emergence

Our model, by construction, is not complete—it needs to be
connected to what happens in the disk. In particular, it needs as
input a statistical description of the population of small loops, or of
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their rate of emergence from the disk. This information determines
the overall normalization of the loop distribution function and
hence the net rates of angular momentum transport and dissipation
in the corona. In the models computed here, we have simply
assumed a fixed, isotropic distribution of small loops.

The ultimate source of coronal activity is the MHD turbulence
in the disk (e.g., Galeev et al. 1979; Tout & Pringle 1992; Miller &
Stone 2000). Therefore, in order to estimate the rate and form of
magnetic flux emergence into the corona, one first needs to un-
derstand the properties of MHD turbulence in a stratified disk,
with a particular emphasis on the production, evolution, and
buoyant rise of magnetic flux tubes (e.g., Schramkowski &
Achtergerg 1993). The best prospect for developing this under-
standing is through appropriate statistical analyses of MRI tur-
bulence in stratified shearing boxes.

However, the notion of a flux tube in most theoretical discus-
sions (including the present paper) is not sufficiently precise to
be applied directly to simulations. What well-defined, measurable,
and statistically meaningful quantities correspond to flux tubes or
to their rates of emergence? Candidates exist, but it is not clear
which is best. Field lines can be found as integral curves of the
field and their motions determined, but by what prescription
should they be grouped into tubes? Alternatively, one might
work with Fourier decompositions of the vertical Poynting flux
on horizontal planes, or with more general n-point correlation
functions of the field.

7. SUMMARY AND CONCLUSIONS

In this paper we construct a general theoretical framework for
understanding the structure of a strongly magnetized corona above
a turbulent accretion disk. This study is motivated by the need to
provide a more solid physical foundation for ADC spectral mod-
eling efforts. It should also act as a connecting bridge between
numerical MHD simulations of MRI-turbulent disks and semi-
empirical coronal models, and stimulate further theoretical studies
of accretion disks coupled to their coronae. We also hope that
some of the theoretical tools and ideas developed in this paper will
prove useful in solar physics.

One of the major goals of our study is to develop a statistical
language appropriate for describing the chaotic coronal mag-
netic field. Here, we are interested in spatial scales larger than
the disk thickness but smaller than its radius and in temporal
scales longer than the orbital period but shorter than the overall
accretion time. Our approach builds on the previous work by
Tout & Pringle (1996), but uses much more realistic physics in
several key aspects and also goes further in analyzing and inter-
preting the results.

To construct the statistical theory, we represent the corona by
an ensemble of elementary magnetic structures, namely, loops
connecting two spots on the disk surface (Fig. 1). Each loop is
characterized by several primary parameters (e.g., the distance
between the footpoints and the orientation). The main object in
this study is the distribution function F of loops in this parameter
space. One of our main goals is to formulate, and then solve, the
loop kinetic equation (LKE) for this distribution function, similar
to the Boltzmann kinetic equation in the statistical theory of gases.

To do this, we first analyze the key physical processes that
govern the evolution of individual coronal loops. First, there are
several processes that affect the loops individually, such as
(1) emergence of small loops into corona; (2) random footpoint
motions due to the disk turbulence; and (3) Keplerian shear,
stretching loops azimuthally and thereby also making them grow
in height. On average, these processes pump energy from the disk
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into the corona, creating a stressed nonpotential force-free field. In
addition, loops may interact with each other via episodic recon-
nection between two individual loops (similar to Tout & Pringle
1996), forming two new loops (see Fig. 5). In our theory recon-
nection is represented as a binary collision, analogous to binary
collisions between atoms in a gas. Correspondingly, we describe
loop-loop reconnection by a nonlinear integral operator, similar to
Boltzmann’s collision operator. In contrast to processes (1)—(3),
magnetic reconnection relaxes the accumulated magnetic stresses
and dissipates the accumulated free magnetic energy. Overall, a
magnetically active ADC can be described as a boiling magnetic
foam.

Based on these processes we are able to construct the loop
kinetic equation. In this equation we characterize the overall rate
of reconnection events relative to the Keplerian shear rate by a
dimensionless parameter «. In order to investigate the role of
magnetic reconnection in the corona, we solve the loop kinetic
equation numerically for several different values of x. We obtain a
statistical steady state for each value of « and find that the steady
state loop distribution function is generally well represented by
a orientation-dependent power law, F(L,6) ~ L=*<? When
Keplerian shear is absent, the distribution function is isotropic,
Qo(0) = const. As the rate of shear relative to reconnection in-
creases (i.e., k decreases), the distribution becomes more and
more anisotropic, with a predominance of toroidal orientation. At
the same time, a typical loop grows to a larger size by a stronger
shear before its growth is disrupted by reconnection. Thus, the
orientation-averaged distribution function becomes shallower
as k is decreased.

Once the distribution function is known, we use it to calculate
several important integral quantities related to the energetics of
the corona. First, we use a self-consistent mean-field approach to
compute the magnetic energy density as a function of height,
B%(z)/87. This quantity represents the collective magnetic pres-
sure of all the neighboring loops that confine any given loop and
thus represents another (in addition to reconnection) way in which
loops interact with each other in our theory. Although it does not
enter explicitly into the loop kinetic equation, B(z) is very impor-
tant in our model. In particular, it controls the thickness of loops
as a function of height, which affects in turn the cross section for
reconnection. In addition, by requiring that the vertical gradient
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of the magnetic pressure B2(z)/87 be balanced by the magnetic
tension within each loop, we self-consistently calculate the equi-
librium shape and vertical extent, Z,(L), of the loops. This, in
turn, enables us to calculate some important quantities such as
the energy associated with a given loop, the force exerted on its
footpoints, etc. We then use these quantities to assess various
issues of coronal energetics, including the overall magnetic en-
ergy stored in the corona, statistical distribution of coronal energy
release events (flares), and the overall angular momentum trans-
ferred by the coronal magnetic field. As a result of our parametric
study with respect to the reconnection parameter «, we find that
if x is decreased (i.e., reconnection in the corona is inhibited)
beyond a certain value, the slope of the loop distribution function
becomes so shallow (namely, shallower than ~3/2) that the con-
tribution of large loops to both the magnetic energy and torque
starts to dominate, leading to a significant enhancement in these
quantities. In our specific model, the critical value of « is found
to be k3, >~ 0.002.

These results demonstrate that the energetic dominance of co-
ronae is inextricably linked to reconnection processes. They thus
motivate further efforts to develop more realistic physical de-
scription of reconnection. To reiterate an important point made
in § 1, the tenuous corona above an accretion disk is likely to be
marginally collisionless (Goodman & Uzdensky 2008), unlike
the dense plasma inside the disk itself. This means that the corona
cannot be described by traditional MHD simulations with con-
stant resistivity because of their inability to control or resolve
magnetic reconnection, which, as we have shown in this paper,
may influence the coronal magnetic energy and angular momen-
tum transfer. Therefore, some kind of a physically motivated sub-
grid prescription for reconnection is needed.
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This work is supported by National Science Foundation Grant
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APPENDIX A

CALCULATION OF B IN TERMS OF F(L)

In this Appendix we calculate the mean magnetic field B(L) in terms of the loop distribution function (L) corresponding to a self-

consistent atmosphere (see § 3.2).

Consider a horizontal slab of thickness dz at height z (see Fig. 15). Correspondingly, there is a minimal length L of loops that reach
above this height. Consider now an arbitrary slender loop A of length L’ > L, with a cross-sectional area a(z) and the angle between

Fic. 15.—Loop segment of area a(z) and angle «, crossing a horizontal slab of thickness dz.
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the loop’s direction and the vertical equal to a(z, L"). Then the volume that the two segments (ascending and descending) of this loop
occupy inside the slab under consideration can be written as

dz
= S — Al
v =2a@) cos a(z, L") (A1)
The volume occupied by all such loops per unit horizontal area of the slab is equal to
dv =2 / S aE)— (A2)
) cosa(z, L)’

Since in our model each loop carries the same amount AW of magnetic flux, the loop cross-sectional area a(z) is the same for all loops
at a given height and is simply equal to AU/B(z). Thus, the above volume is

2AW < L
AV ="—dz / F(L' . (A3)
B(z) L cos a(z, L")

But, on the other hand, these loops occupy all the volume within the slab, and so this volume per unit horizontal area ought to be
equal to just dz. This gives us the equation that determines B as a function of L:

dL’

V1= sinfa(z, L)

B(z) = Bob(z) = 2AW¥ / h F(L") (A4)
L

Now, using equation (14), we can replace sin a(z, L") = biop(L")/b(2) = biop(L")/biop(L) and hence obtain the following integral
equation for the function b(L'):

!/
/ )l = 220\11 = const., (A5)
b2 (L) top( )

top

which can be rewritten as

PUb')db' By

=% T 2ATU const. (A6)

where U(b") = —F[L(b")| dL/db'. By substitutions ¢ = b2, s = b?, and V(£) = U(b')/2b’, this equation can be transformed into the
Abel integral equation, that can be immediately solved, yielding the following final result:

By _dL By
and hence
_ 7T\I/0 = \I/() ’ ,
db =~ " CF(L)dL = WD) = o /L F(L)dL', (A8)

which is in agreement with our general expectation above.

APPENDIX B
PROOF THAT &(L) = 2Emagn

In this Appendix we prove the conjecture that (L) = 2E,5n(L). The proof goes as follows.
First, according to equation (31), the force on the loop’s footpoint can be expressed in terms of the magnetic field at the top of the
loop as

AVUBL.(z =0;L) _ AWBp(L)
47 o 47 '

Jol) = (B1)

Using expression (34) and taking into account that a loop has two legs, we have

o o) _ d A\I/ zopl) B2
B(l)dl = ﬁ— / Bz) =& _Be (B2)
T Jz=0

cos o -0 /B2 Btzop

AV
Emagn(L) =2 —— 3
T Jleft leg
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On the other hand, substituting (B1) into equation (30), we get
AUB, [*
EL) ==, 0 /0 biop(L')dL'. (B3)
Integrating this by parts yields
L 1
EL) :/ b(L)dL' = b(L)L+/ L(b")db'. (B4)
0 b(L)
According to (17):
1 1 1 " "
/ L ydb' = —2/ b’/ M db" db’. (B5)
0] b'=b(L) r Vb2 — b2
Interchanging the order of integration, we get
1 1 " b" 1 "
dz(b'") / dz(b")
L ydb' = -2 db" db' | = -2 Vb — b2 db". B6
A ( ) Ar/:b db” b'=b \/b”2 — b’z b =b db” ( )
On the other hand, according to (17),
1 2 " "
b*[dz(b") /db
bL)L = —2 / brld=(bT) b (B7)
br=br) Vb'? — b2
Combining these results we get
1 12 g1
b'""dz
E(L)= -2 / ——— = 2Fnaen- B8
( ) r—b(D) /——‘———4b”2 — bz magn ( )

End of Proof.
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