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Outline

« Fast reconnection regime for HED plasmas
Essential ingredients:

— magnetic flux pile-up due to the very strong
supersonic flow drive.

— reconnection is mediated by collisionless two-fluid
effects (Hall and pressure tensor)

* The dynamo effect in accretion disks driven by
the magneto-rotational instability: effects of
helicity transport, and lessons learned from
magnetically confined fusion plasmas
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Reconnection observed in plasma bubble
experiments

Rutherford [Nilson, et al PRL 2006, PoP 2008]

tO + 0.5ns

Shenguang [Zhong et al
Nature Phys 2010]

Outflow/jet

~<10°




How to make a plasma bubble

0.35-1 um laser
1018 W/m?

~ kd / ns / mm?2

Plastic or
metal target

~1 mm



How to make a plasma bubble

N ~ 1026-27 m-3

ea




How to make a plasma bubble

V~210°m/s
~CS




How to make a plasma bubble

~50-100 T ("MG")
toroidal B field

B field generated through a Biermann battery two-fluid

effect 9B 7
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HED bubble reconnection regime

Estimates:
V., /' V,>=1 (strong reconnection drive)

A problem, since fast “two-fluid” reconnection typically gives us

We find this leads to highly dynamic current sheet geometry
and flux pileup. Compression of B raises instantaneous V,

over nominal V 5y

e, PPPL
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2D PIC simulations for bubble collisions
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Bubble reconnection simulation
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Parameters (Rutherford-like)

L/d, =20, Ly/d.=3.3,V,=2C, B.=8
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Consequences of flux pileup

Vary initial B, but find
total reconnection time
does not change.

—

Reconnection
independent of
nominal V,,
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Consequences of flux pileup

Vary initial B, but find 1 TR
07 % . a)ty. /'t
total reconnection time 05| 6 6 o5 O O
does not change '
Reconnection 0 2
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Peak reconnection rate scales By /(2ng Ty)

with instantaneous V

[Fox, Bhattacharjee, Germaschewski, PRL (2011)]
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Electron momentum balance

a)IBI/BO,t/td=O.20 b)E /B Ao,t/t =0.20 C)Ohm'SIaW,t/td=O.20
. 6 . . .
% I e
>o ol
M
) - ”l‘k
d)IBI/BO,t/td=O.33 E /BV t/t =0.33
5 4
E 0 =— >
5 0
-10 0 10 -10 0
x/di x/di
+ViXB=(1/ne)JXB-(1/ne) VXPe,Xy - F‘ PPPL

- - (me/e) ave/at " PRINCETON

PLASMA PHYSICS
LABORATORY



Quadrupole “Hall” magnetic field
signature observed
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Omega-like Experiment
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Baseline results summary

 Recent HED plasma bubble experiments appear to be in
a previously inaccessible, strongly-driven reconnection

regime with two-fluid effects.

« Collisionless PIC simulations find reconnection with a
combination of pile-up and two-fluid effects, and
reconnection times in qualitative agreement with
experiments
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New experiments
(in collaboration with G. Fiksel, P. Nilson, S.
Hu, and others at Rochester LLE)

MIFEDS Magnetic field from laser-produced
Cu foil foil current plasma
! CH ablator /
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What about self-generated (Biermann)
field?

MIFEDS fields

Biermann fields u

Biermann not explicity in EP simulation models yet




Nilson, et al also observe outflow jets

Outflow jet

| \ (with oblique component -

3-d effect and a challenge
to theory!)

region shown in
_Interferogram e)
) =

400 um

[ Nilson et al, PRL 2006, PoP 2008]



Reconnection at the Dayside Magnetopause

see J. Raeder (JGR, 104, 17357, 1999) for a description of
the General Geospace Circulation Model (GGCM)
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Steady solar wind conditions, southward IMF, and constant
plasma resistivity:
S = {500, 1000, 2000, 5000, 10000}
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Magnetic Pileup and Associated
Plasma Depletion
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The magnetorotational Instability (MRI) in
accretion disks

e Is it possible for MRI to generate a large scale
magnetic field?

e Can MRI produce a turbulent MHD dynamo?




Magnetic field generation through correlated fluctuations
0B

ot
~ —<VxB>=a<B>-8<dJd>
| —
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Large-scale dynamo
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The alpha effect can be rigorously written in the form of a total

divergence of the helicity flux from fluctuations.

Local magnetic helicity variation is

(A - B)
ot

+V . -TI'x=-2E-B.

Total helicity flux : [y = —2A x E— A x 2

@ |t can be shown that fluctuation induced dynamo effect is
expressed in a divergence form and dissipative terms.

-~ ~ o~ 10 ~~
<V><B>-B:—77<J-B>—EE<A-B>—V-<Fk>/2
“

divergence of helicity flux from fluctuations

<rk>=_2<I\xE>—</’ingx>



Dynamo term in the form of a total divergence conserves helicity.

@ The alpha effect in a total divergence form conserves
helicity for flux conserving boundary condition (i.e
conducting wall)

@ [<VxB>Bdv=— [V <Tg>/2dv =
$<Ty>/2-ds

° [< VxB>-Jdv<0 dissipates magnetic energy.

For example for tearing mode

@ Using tearing ordering in the inner layer, Fluctuation
iInduced dynamo effect can be written in a divergence form
which is related to the magnetic diffusivity.

@ <VX§>'BN—V.(K.B)VZV.(/{2V%)




Quasilinear simulations show that the alpha effect can be written

In terms of a total divergence for tearing mode with flow.
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@ For m=1 tearing mode with flow, the divergence of the
helicity flux from fluctuations has the main contribution to

the alpha effect. <V xB > B~ —V. < I, > /2.



Nonlinear simulations show that the alpha effect can be written in

terms of a total divergence for an MR| mode.

Divergence forms of m=1 MRI dynamo during nonlinear

saturation Magnetic energies
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@ Nonlinear mi1 MRI| mode simulation show ,
<VxB>B=~x-V <ly>/2

@ The helicity flux of Vishniac & Cho produces small dynamo
effect.



Large-scale mean toroidal magnetic field (and energy) is

generated by the nonaxisymmetric modes.
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Large-scale sdrface-averaged
toroidal magnetic field

@ In the simulation with only vertical B, a large-scale < B, >
Is generated due to vertical alpha effect.



