Role of Pressure Anisotropy in Reconnection

J Egedal, A Le, O Ohia, A Vrublevskis, W Daughton, H Karimabadi & VS Lukin

Fluid simulations

Pressure Anisotropy Important to the Structure of the Reconnection Region

Kinetic simulation results at $m_i / m_e = 400$, [A Le et al., PRL 2013]

Pressure Anisotropy Important to the Structure of the Reconnection Region

Kinetic simulation results at $m_i/m_e = 1836$, [A Le et al., PRL 2013]

Outline

- Spacecraft observations of electron distributions
- Kinetic model for electrons anisotropy using Φ_{\parallel}
- Magnetized electron Equations of State (EoS)
- Force balance of the electron diffusion region
- Regimes of the electron diffusion region
- Conclusions

The Earth's Magnetic Shield

Model for Inflow Anisotropy

• Measurements within the ion diffusion region reveal:

Strong anisotropy in $f_{\rm e}$

$$p_{\parallel} > p_{\perp}$$

Cluster observations

2001-10-01.

Bi-directional Beams

Electrons in an Expanding Flux Tube

Magnetic moment:

$$\mu = \frac{m v_{\perp}^2}{2R}$$

→ mirror force:

Electrons in an Expanding Flux Tube

Magnetic moment:

$$\mu = \frac{m v_{\perp}^{2}}{2B}$$

→ mirror force:

$$\Phi_{\parallel}(\mathbf{x}) = \int_{\mathbf{x}}^{\infty} \mathbf{E} \cdot d\mathbf{l}$$

Electrons in an Expanding Flux Tube

Trapped:

$$\mathcal{E}_{\perp} = \mu B = \mathcal{E}_{\infty} B / B_{\infty}$$

$$\Longrightarrow \mathcal{E}_{\infty} = \mu B_{\infty}$$

Passing:

$$\mathcal{E} = \mathcal{E}_{\infty} + e\Phi_{\parallel}$$

$$\Longrightarrow \mathcal{E}_{\infty} = \mathcal{E} - e\Phi_{\parallel}$$

Vlasov:

$$\frac{df}{dt} = 0$$
$$f(\mathbf{x}, \mathbf{v}) = f_{\infty}(\mathcal{E}_{\infty})$$

$$f(\mathbf{x}, \mathbf{v}) = \begin{cases} f_{\infty}(\mathcal{E} - e\Phi_{\parallel}) &, \text{ passing} \\ f_{\infty}(\mu B_{\infty}) &, \text{ trapped} \end{cases}$$

Formal Derivation using an "Ordering"

The drift kinetic equation:

$$\frac{\partial f}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_{D}) \cdot \nabla f + \left[\mu \frac{\partial B}{\partial t} + e(\mathbf{v}_{\parallel} + \mathbf{v}_{D}) \cdot \mathbf{E} \right] \frac{\partial f}{\partial \mathcal{E}} = 0$$

Boundary conditions:

$$B = B_{\infty}$$
$$f = f_{\infty}(\mathcal{E}_{\parallel \infty}, \mathcal{E}_{\perp \infty})$$

Ordering:
$$\nabla_{\parallel} \sim \frac{1}{L}$$
, $\nabla_{\perp} \sim \frac{1}{d}$, $\frac{\partial}{\partial t} \sim \frac{v_D}{d}$ $\frac{d}{L} \sim \delta$, $\frac{v_D}{v_t} \sim \delta^2$ $f = f_0 + \delta f_1 + \dots$

$$f_0(\mathbf{x}, \mathbf{v}) = \begin{cases} f_{\infty}(\mathcal{E} - e\Phi_{\parallel}) &, \text{ passing} \\ f_{\infty}(\mu B_{\infty}) &, \text{ trapped} \end{cases}$$

Wind Spacecraft Observations in Distant Magnetotail, 60R_E

The Acceleration Potential in a Kinetic Simulation

 $e\Phi_{\parallel}/T_{e}$

Kinetic Model -> Fluid Closure (EoS)

$$f(\mathbf{x},\mathbf{v}) = \begin{cases} f_{\infty}(\mathcal{E} - e\Phi_{\parallel}) &, \text{ passing} \\ f_{\infty}(\mu B_{\infty}) &, \text{ trapped} \end{cases}$$

$$\int \dots \, \mathbf{d}^{3}\mathbf{v} \qquad \qquad \int p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel}) \\ p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel}) \\ p_{\perp} = p_{\perp}(B,\Phi_{\parallel}) \end{cases}$$

$$p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel})$$

$$p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel})$$

$$p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel})$$

$$p_{\perp} = p_{\perp}(B,\Phi_{\parallel})$$

$$p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel})$$

$$p_{\perp} = p_{\perp}(B,\Phi_{\parallel})$$

$$p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel})$$

$$p_{\perp} = p_{\perp}(B,\Phi_{\parallel})$$

$$p_{\parallel} = p_{\parallel}(B,\Phi_{\parallel})$$

$$p_{\parallel} =$$

A. Le et al., PRL (2009)

Confirmed in Kinetic Simulations

EoS previously confirmed in 2D simulations, now also in 3D simulations.

New EoS Now Implemented in Two-Fluid Code

New code implemented by O Ohia using the HiFi framework developed in part by VS Lukin

Standard two-fluid equations

$$\begin{split} \frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}_i) &= 0 \\ m_i n \left(\frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i \right) &= \mathbf{J} \times \mathbf{B} - \nabla \cdot \bar{\mathbf{P}} + m_i n \nu_i \nabla^2 \mathbf{V}_i \\ \frac{\partial}{\partial t} \left(\frac{p_i}{n^{\Gamma}} \right) &= -\mathbf{V}_i \cdot \nabla \frac{p_i}{n^{\Gamma}} \\ \frac{\partial \mathbf{B}'}{\partial t} &= -\nabla \times \mathbf{E}' \\ \mathbf{E}' + \mathbf{V}_i \times \mathbf{B} &= \frac{1}{ne} \left(\mathbf{J} \times \mathbf{B}' - \nabla \cdot \bar{\mathbf{P}}_e \right) + \eta_R \mathbf{J} - \eta_H \nabla^2 \mathbf{J} \\ \mathbf{B}' &= \left(1 - d_e^2 \nabla^2 \right) \mathbf{B} \\ \mu_0 \mathbf{J} &= \nabla \times \mathbf{B} \end{split}$$

Anisotropic pressure model

$$\begin{split} \bar{\mathbf{P}} &= p_i \bar{\mathbf{I}} + \bar{\mathbf{P}}_e = p_i \bar{\mathbf{I}} + p_\perp \bar{\mathbf{I}} + \left(p_\parallel - p_\perp \right) \frac{\mathbf{B} \mathbf{B}}{B^2} \\ \tilde{p}_\parallel &= \tilde{n} \frac{2}{2 + \alpha} + \frac{\pi \tilde{n}^3}{6\tilde{B}^2} \frac{2\alpha}{2\alpha + 1} \\ \tilde{p}_\perp &= \tilde{n} \frac{1}{1 + \alpha} + \tilde{n} \tilde{B} \frac{\alpha}{\alpha + 1} \end{split}$$

where $\alpha = \tilde{n}^3/\tilde{B}^2$ and for any quantity $Q, \ \tilde{Q} = Q/Q_{\infty}$

New EoS Implemented in Two-Fluid Code

Ohia, et al. PRL 2012 (using the HiFi framework by V.S. Lukin)

New *EoS* Implemented in Two-Fluid Code

Ohia, et al. PRL 2012 (using the HiFi framework by V.S. Lukin)

Analytic Model for Electron Jets

Additional current term:

$$J_{\perp \rm extra} = [(p_{\parallel} \! - \! p_{\perp})/B] \hat{b} \! \times \! \hat{b} \! \cdot \! \nabla \hat{b}$$

The magnetic tension is balanced by pressure anisotropy:

$$p_{\parallel}(n,B) - p_{\perp}(n,B) = B^2 / \mu_0$$

Use *EoS* to get scaling laws:

$$\beta_{e\infty} = \frac{\text{plasma pressure}}{\text{magnetic pressure}}$$

EoS for Anti-Parallel Reconnection?

The electrons are magnetized in the inflow region:

Scan in $B_{\rm g}$ and $m_{\rm i}/m_{\rm e}$

Pitch angle diffusion

Pitch angle diffusion is controlled by:

$$\kappa = \sqrt{R_B/\rho_e}$$

Depends on $B_{\rm g}$ and $m_{\rm i}/m_{\rm e}$

Magnetized exhaust

 $(\sim 15d_{.})$

Current along one separator

Magnetized exhaust

Long current layer

Summary:

Pressure Anisotropy is Important!

Kinetic simulation results at $m_i/m_e = 1836$, [A Le et al., PRL 2013]

New Fluid Closure Allows for Exploration of Large Systems

$$m_{\rm i}/m_{\rm e} = 400$$
, $B_{\rm g}/B_{\rm 0} = 0.28$

Requirements on New Experiment

- Large normalized size of experiment: $L/d_i \sim 10$ (high *n*, large *L*)
- Low collisionallity to allow $p_{\parallel} >> p_{\perp}$: $\tau_{\rm ei} \ v_{\rm A} > d_{\rm i}$ (low n, high $T_{\rm e}$, high B)
- Low electron pressure: $\beta_{\rm e} < 0.05$ (low $n, T_{\rm e}$, high B)
- Manageable loop voltage: $0.1v_A B_{rec} (2\pi R) < 5kV$ (high n, low B)
- Variable guide field: $B_{\rm g} = 0 4 B_{\rm rec}$
- Symmetric inflows

Experimental window available in Hydrogen or Helium plasma with

$$n \sim 10^{18} \text{ m}^{-3}$$
, $T_{\rm e} \sim 15 \text{ eV}$, $B_{\rm rec} \sim 15 \text{ mT}$, $L \sim 2 \text{ m}$

New Experiment Needed

Experimental window available in Hydrogen or Helium plasma with

 $n \sim 10^{18} \text{ m}^{-3}$, $T_{\rm e} \sim 15 \text{ eV}$, $B_{\rm rec} \sim 15 \text{ mT}$, $L \sim 2 \text{ m}$

Electron Heating

$$\beta_{e\infty} = \frac{\text{plasma pressure}}{\text{magnetic pressure}}$$

New Simulation with $\beta_e \sim 0.003$

Spacecraft Distributions Reproduced

Φ_{\parallel} confines electrons, allowing sustained energization by E_{\parallel}

Generation of Super-Thermals

Generation of Super-Thermals

Flare Heating by Parallel E-fields?

Reconnection in flares occurs where $\beta_{e\infty} < 0.01$

Before reconnection: $p = nT_e$

$$\rightarrow e\Phi_{\parallel} \sim T_e \log(n/n_0)$$

During reconnection:

Electrons are collisionless

Observations need

$$e\Phi_{\parallel} \approx 200T_e$$

Conclusions

 Inspired by experimental and spacecraft observations, a new model for pressure anisotropy is derived. It includes the effects of trapped electrons as the main driver of the anisotropy.

 The results from the model have been confirmed through comprehensive numerical simulations. It provides quantative insight to how the pressure anisotropy governs the structure of the reconnection region.