HED magnetic reconnection experiments with externally applied magnetic field

W. Fox

University of New Hampshire

G. Fiksel, P. Nilson, P.Y. Chang, S.X. Hu, LLE

K. Germaschewski, UNH

A. Bhattacharjee, PPPL

MIFEDS-based reconnection experiments (in collaboration with G. Fiksel, P. Nilson, S. Hu, P.Y. Chang, LLE)

Outline

- Description and planning experiments for OMEGA EP based on MIFEDS for magnetic field generation
- Some first results from MIFEDS experiments
 - experiments at B=0 and B finite
 - magnetized "ribbons" of blowoff plasmas have been created and collided, B field destruction observed

MIFEDS II

(Magnetized Inertial-Fusion-Energy Delivery System)

Ref: O. Gotchev, J. Knauer, P. Chang, et al, and R. Betti, RSI (2009).

WFox PPPL-HED 2012

Prospects for laser-driven reconnection experiments

- Possibility to reach and study reconnection in a wide range of L/di (maybe 100-200?) and high S regimes
- Test predictions of flux pile-up, island formation (will require further experimental and diagnostic creativity)
- MIFEDS-based experiment:
 - control magnetic flux available for reconnection (from 0 to more than available from Biermann fields)
- Further knobs (e.g. collisionality, separation) are being explored through further computation

Comparison with previous bubble reconnection experiments

- Quasi-2d geometry
- MIFEDS: control, vary magnetic flux available for reconnection
- Null experiment: B = 0
- Eventually study guide field reconnection.

WFox PPPL-HED 2012

Example PIC simulation

What about self-generated (Biermann) field?

MIFEDS fields

Biermann fields

Proton radiography simulated in post-processing

OMEGA EP Experiments

Simply applying MIFEDS does not produce a magnetized blowoff plasma

Sept,
$$B_{mifeds} = 0$$

t = 2.8 ns

Dec,
$$B_{mifeds} = 6 T$$

 $t = 2.8 \text{ ns}$

Ablation into vacuum MIFEDS field does not form a current sheet

"Background" plasma source enables blowoff plasma to be magnetized

Experimental setup

Presence of background plasma allows formation of propagating magnetized plasma with B-field "ribbon"

Shot 14250: 100 J bg plasma @ -15 ns 1.5kJ drive plasmas @ -3 ns

Particle-in-cell simulation with bg plasma source

Simulated Proton tracks

Ribbon of magnetic field scatters proton beam leading to observed proton void (not observed with no background plasma, e.g. in previous shot-days with MIFEDS) 2012

Collision of counterpropagating magnetized plasmas

Drive beams: UV beams 1&4, 1500 J, timing variable

Background plasma: UV Beam 3, 100 J, @ Drive -12 ns

Backlighter: 800 J at t=0

Shot 14250, Drive @ -3 ns

Shot 14252, Drive @-4 ns

Shot 14251, Drive -5 ns

Summary

 New experiments have been designed for OMEGA EP using MIFEDS for controlling B field involved in reconnection.

- Magnetized blowoff plasmas have been successfully produced and collided
 - low-density background plasma is key
 - magnetic field destruction observed