

Laboratory Study of Magnetic Reconnection

Masaaki Yamada
Princeton Plasma Physics Laboratory,
Princeton University

April 4, 2013
In collaboration with members of MRX group and NSF-DoE Center of Magnetic Self-organization

Magnetic Reconnection

Before reconnection

After reconnection

- Topological rearrangement of magnetic field lines
- Magnetic energy => Kinetic energy

Outline

- Magnetic reconnection
 - Why does it occur so fast compared with classical MHD?
 - Lower collisionality <=> faster reconnection
 - Two fluid effects
- Local analysis based on two-fluid physics through cross validation with numerical modeling
 - Collision-free reconnection => an X-shaped reconnection layer
 - Hall effect and experimental verification
 - Two-scale reconnection layer identified
 - 3-D picture of magnetic reconnection layer
- Recent Discoveries on energy conversion on MRX
 - Heating of ions and electrons
 - New picture of particle dynamics
- Other findings on MRX
- Future Plans

Samples of Reconnection Experiments

Device	Where	When	Who	Geometry	Q's
3D-CS	Russia	1970	Syrovatskii, Frank	Linear	3D, heating
LPD, LAPD	UCLA	1980	Stenzel, Gekelman	Linear	Heating, waves
TS-3/4	Tokyo	1990	Katsurai, Ono	Merging	Rate, heating
MRX	Princeton	1995	Yamada, Ji	Toroidal, merging	Rate, heating, scaling
SSX	Swarthmore	1996	Brown	Merging	Heating
VTF	MIT	1998	Egedal	Toroidal with guide B	Trigger
RSX	Los Alamos	2002	Intrator	Linear	Boundary
RWX	Wisconsin	2002	Forest	Linear	Boundary

Magnetic Reconnection Experiment (MRX)

How do we study magnetic reconnection in dedicated lab experiments?

- 1. We create a proto-typical reconnection layer in a <u>controlled</u> manner and study the fundamental plasma dynamics
- 2. Cross-validation of experiment and numerical modeling

The primary issues/questions;

- Why does reconnection occur so fast so explosively?
- Dynamics of electrons and ions
- How does local reconnection determine global phenomena?
- How is magnetic energy converted to plasma flows and thermal energy?

Plasma Production in MRX

- 1) Gas is injected into the vacuum vessel.
- 2) Currents through the "flux cores" ionize plasma and drive reconnection by forming a current sheet.
- 3) Probes measure magnetic field, temperature, and density.

Experimental Setup and Formation of Current Sheet

 n_e = 1-10 x10¹³ cm⁻³, T_e ~5-15 eV, B~100-500 G,

The Sweet-Parker 2-D Model for Magnetic Reconnection

Assumptions:

- 2D
- Steady-state
- Incompressibility
- Classical Spitzer resistivity

B is resistively annihilated in the sheet

 $\tau_{reconn} << \tau_{SP} \sim 6-9 \text{ months}$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B} \qquad \Longrightarrow \qquad V_{in} B = \frac{\eta_{Spitz}}{\mu_0} \frac{B}{\delta}$$

Mass conservation:

Pressure balance:

$$\frac{1}{2}\rho V_{out}^2 \approx \frac{B^2}{2\mu_0} \Rightarrow V_{out} \approx V_A$$

 $V_{in}L \approx V_{out}\delta$

$$\frac{V_{in}}{V_A} = \frac{1}{\sqrt{S}}$$

$$S = \frac{\mu_0 L V_A}{\eta_{Spitz}}$$

S=Lundquist number

Sweet-Parker model works only in *Collisional MHD*

• Adjustments by compressibility and boundary conditions

Ji et al., PRL (1998)

• When collision rate is reduced, the effective resistivity (E/j) increases beyond Spitzer values (Kuritsyn et al. 2006)

Main Q: what causes the enhanced resistivity?

Models for Fast Reconnection

Generalized Sweet-Parker model with enhanced resistivity

$$\frac{\delta}{L} = \frac{1}{\sqrt{S}}$$

Two-fluid MHD model in which electrons and ions decouple in the diffusion region ($\sim c/\omega_{pi}$).

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J} + \frac{\mathbf{J} \times \mathbf{B} - \nabla p}{en} + \frac{m_e}{e^2} \frac{\mathrm{d} \mathbf{V}_e}{\mathrm{d}t}$$

Generalized Ohm's Equation in Collisionless Plasmas

• The width of the electron diffusion region is c/ω_{pe} where energy dissipation occurs

MRX with fine probe arrays

• Five fine structure probe arrays with resolution up to $\Delta x = 2.5$ mm in radial direction are placed with separation of $\Delta z = 2.3$ cm

Neutral sheet Shape in MRX

Changes from "Rectangular S-P" type to "Double edge X" shape as collisionality is reduced

Rectangular shape

Collisional regime: $\lambda_{mfp} < \delta$ Slow reconnection

No Q-P field

X-type shape

Collisionless regime: $\lambda_{mfp} > \delta$ Fast reconnection

Q-P field present

Predicted by Ma & Bhattacharjee' 96

Experimental identification of the two-scale reconnection layer: e-diffusion regime inside the ion diffusion region

Recent study of reconnection region in a laser plasma J. Zhong et al,

Ren, et al. PRL. 101,085003(2008)

- Ion diffusion region with the width of $\sim d_i$
- Electron diffusion region with the width of $\sim 8-12d_e$

Evolution of magnetic field lines during reconnection in MRX

Two-fluid physics dictates reconnection layer dynamics

- Acceleration and heating of mirror trapped electrons.
- Out of plane magnetic field is generated during reconnection.
- Parallel electric conduction is expected to dictate potential profile before and after reconnection.

Sheath width ~ c/ω_{pi}

Recent MRX Results with New Diagnostics

- Magnetic probes
 - 7 probes placed every 3cm along Z, 6mm maximum radial resolution.
- Langmuir probes.
- Mach probes.
 - Calibrated by spectroscopic data.
- Floating potential probe array.
 - 17 radial measurement points, 7mm maximum radial resolution.
- High frequency fluctuation probes.
 - Fluctuations up to $\sim 10 MHz$.
- Ion Dynamics Spectroscopy Probes (IDSPs).

Diagnostics - IDSP

In-plane potential profile

A saddle shape plasma potential profile is measured in MRX

Potential profile on MRX

Measured dynamics of electron and ions

Ion acceleration data and simulation results

Wygant JGR 2005

Goldman et al., 2012

Drake et al., 2009

How are electron heated?

How are electron heated?

 $T_e(R, z)$ rom triple probes

• Light emission

Two-fluid physics dictates reconnection layer dynamics

- Acceleration and heating of mirror trapped electrons.
- Out of plane magnetic field is generated during reconnection.
- Parallel electric conduction verified even after reconnection.
- Electron heating just outside the e-diffusion
- Ion acceleration and heating at the separatrices

Sheath width ~ c/ω_{pi}

Collisionless Reconnection in the Magnetosphere

A reconnection layer has been documented in the magnetopause

A jog experiment on MRX

MMS (Multi-scale Magnetosphere, Satellite)

In collaboration with UNH, MMS, UC-Berkeley.

Example of Jogging Discharges – 2D Case

OPPPL

Hall Effects on Guide Field Reconnection in MRX

Effects of Guide Fields on Collision-less Reconnection

T. Tharp et al, PRL 2012

No comprehensive theory for this observation yet!

Modified Quadrupole Field

There isn't a simple analytic model for this, but measurements qualitatively match two-fluid simulations

Simulations performed by A. Bhattacharjee, B. Sullivan, and Y. Huang.

Reconnection in Partially Ionized Plasmas

- Important in the solar chromosphere $(10^{-4} < \rho_i/\rho_n < 1)$
- Electron-neutral collisions increase classical resistivity
- Ion-neutral drag can effectively increase the ion mass: $V_A \rightarrow V_A (\rho_i/\rho_n)^{1/2}$; $c/\omega_{pi} \rightarrow c/\omega_{pi}(\rho_n/\rho_i)^{1/2}$
 - Length scale: Predicted to increase for fast Hall reconnection (Zweibel ApJ 1989 739:72, Malyshkin et al ApJ 2011).
 - ▶ **Key physics:** Often treated as "*ambipolar diffusion*", but multi-fluid approach will be needed to see all effects.

Ion outflow speed is reduced to Alfvén speed based on total (ion+neutral) mass density.

E. Lawrence et al PRL, (2013)

Recent (2D) Simulations Find Multiple Flux Ropes

Bhattacharjee et al. (2009):MHD

The Sweet-Parker layer breaks up to form plasmoids when $S > \sim 10^4 =>$ Turbulent reconnection?

Impulsive fast reconnection with multiple X points

Daughton et al. (2009): PIC

New MRX phases provide access to broader issues of magnetic reconnection

New reconnection experiment proposed at PPPL

Proposed Large Reconnection
Experiment (MRX-U)
[S=10^5, effective size=10^3]

Summary

- Notable progress made for identifying causes of fast reconnection
 - Two fluid MHD physics plays dominant role in the collisionless regime.
 Hall effects have been verified through a quadrupole field
 - Transition from collisional to collisionless regime documented
 - Impulsive reconnection (VTF, MRX)
 - Ion heating (SSX, VTF, MRX)
- Significant progress has been made both in laboratory and space astrophysical observations through cross-validation of experiments and modeling
 - Recent discoveries on MRX:

Heating and acceleration of ions and electrons

Effects of guide field

Reconnection in partially ionized plasmas

- New findings on mechanisms of energy transfer to plasma particles
 - Acceleration
 - Heating

Occur in much wider region than considered before

Gamma ray flares in Crab Nebura

Reconnection could explain high energy gamma ray emission from the center of Crab Nebula (J. Arons, R. Blandford, et al) Uzdensky et al 2011