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Overview of the collaborative « Magnetism »
program and HEDP magnetic reconnection study

J. Fuchs (LULI) & R. Smets (LPP)
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. « Magnetism » program ”))\

LNCMI

. Current status of research

. Experimental measurement of B-field produced by
high-power laser

. Simulations of reconnexion in non-HEDP and HEDP
configurations

. Next stages
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. The program is aimed at improving the current ¢

understanding in B-field A

— generation, growth (in relation with heat flow)

— reconnexion with applications in HEDP (ICF) and space
physics

. Collaboration between HELP labs (INRS, LULI) and
space physics labs (LPP, LESIA)

. Includes experimental (using lasers) and
theoretical effort

. Open to collaborations!



Past and ongoing effort .
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*Clarify the interplay between magnetic fields and heat flow in order to \))(
have predictive capability regarding B field growth and evolution in HEDP-7/\>

LNCMI

*B fields affect heat carrying electrons (gyration & heat flow bending through Righi-
Leduc effect)
*Heat flow & non-locality affect B fields through the Nernst effect

*Previous work (IC, MIT, LLE) have underlined the complexity of the topic &
the ability of VFP simulations to model correctly such dynamics

*Our work: improve MHD modeling & B fields/heat flow measurements in
various HEDP conditions

*Explore the applicability of HEDP experiments to space & solar physics
issues, namely reconnexion in various configurations



A first experiment conducted at RAL clearly showed
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C. Cecchetti et al., PoP 2009
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To allow comparison with hydro-rad simulations, we
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compute 3D proton trajectories in B-fields
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Both the dose modulation and the location of the

deflexion are used to compare with the experiments ,
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A second experiment was performed at LULI2000 using

higher energy (200-400 J) and large focal spot

i . 9 (5 oie

Pico2000

CPA beam protons

100pum Gaussian ~ 200um flat top
probed 0.6 ns after the onset of the
~2 10 W/cm? / 2 ns beam

X

LNCMI

*Large deflections were observed

*The longitudinal heat flow measured
through x-ray tracers was consistent with
the simulations

L. Lancia et al., LPB 2013



Significant efforts were made on the

INRS simulation side (2
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Significant efforts were made on the

INRS simulation side L
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We could observe that NL heat transport plays an

essential role to correctly model the B field
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But the late evolution of the B field is still
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. The LULI2000 campaign probed the plasma only at the beginning of the high- o

power laser irradiation )}({

. MHD could reproduce well the B-fields, but was validated against the kinetic LNCMI
model only over short times

. Lietal. (07, 09) showed issues with Masnex modeling of late time evolution of B
fields

. This motivated us to study the long-term B evolution
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The experiment (@ Titan/LLNL) used many
~nrs  diagnostics to constrain the simulations /.2

Brfmdr :
. Visible transverse interferometry (n,) | =

%
2

. Visible transverse polarimetry (B in the corona) e
. Proton probing (B in the dense plasmas)
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Hybrid simulations

Can hybrid code handle magnetic reconnection in HEDP 7

Physical hypotheses :
» Quasi-neutrality : ne ~ n; (but V.E # 0)

Electrons mobility — oo : Vg is such as
J=ne(Vi-V,)=V xB

Closure equation for electrons : isotherm or adiabatic

v

v

v

Neglect transverse component of displacement current

v

Hence, needs an Ohm'’s law :

E=-VxB+N1JxB-V.P.)+n)—1nAl

= Can solve kd; <1, w/Q; > 1, but no electron scales (neither
spatial, nor temporal), and no plasma frequencies. Well suited if

wp/S2 > 1 (1000 in the solar wind).



What is needed for reconnection ?

To trigger a reconnecting instability, one needs an electric field
suchas V x E; #0

= If we are not interested in the onset (at electron scales), small
(numerical) resistivity can do the job.

For collisionless & 3 ~ 1 plasmas, GEM challenge (Birn 2001)
showed that when the Hall effect is considered, the reconnection
rate does not depend on the formalism.

= What about HEDP ?

Nernst and Righi-Leduc effects are not considered. Collisions can
be included.



HECKLE is versatil, 3D & parallelized

Initial set up, very close to Fox et al. 2011 :

Laser Beam

Density
Magnetic Field

= 2 bubbles initially (and not 2 halves) including a background :

» Can handle asymetrieson B, n, T, V...
» Can handle non-coplanar configurations : set a given angle of
rotation around the 2 directions of the target plane.

= Plus few cautions to get V.B = 0 and periodic boundary
conditions.



Initial conditions

Old standing problem : if the initial set-up is not a kinetic
equilibrium, energy has to be redistributed... generally in a wave.

This is the case if one uses a Maxwellian with an initial fluid
equilibrium.

In our conditions, we are not even at an equilibrium... and of
course we launch a k; (magnetosonic) mode at t = 0.

A kinetic equilibrium is generally very hard to find even in
apparently simple topology : We do not think about it for laser
configuration !

= Is it a problem for the reconnection process ?



Initial wave

This wave is very clear on the modulus of total ion velocity :

0.00: yO1f

= This question the initial set-up... that nevertheless seems
coherent with hydro-radiative simulations. The associated RAM
pressure is small.



Initial Slow-down
The initial ion velocity is also slowed-down prior reconnection :

Total Pr 0 4
20.00[3 KE[IC ssure Lime 3 2 040

0.0

Y - Axis

2097 0.00

X - Axis

= Essentially because of the enhancement of electron density at
the noze (snowplow problem). Mostly a consequence of the
background...



Initial magnetic flux pile-up ?
Redistribution of magnetic pressure in the flux tube :

Y - Axis
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= The flux tube is pushed from inner side, and blocked in the
outer side. The total magnetic flux to be reconnected is

conserved...



First run

Let's have a look at reconnection...

Modulus lon Velocit time = 16.00: v0Dla 100

20.0

0.0 0.50

Y - Axis

-20_5]0 0 0.00

X - Axis

= Fast reconnection with an outward jet velocity bounded by the
Alfvén speed... as in GEM challenge.



Energy budget

Is this accelerated flow associated to heating ?

lon Temperature @ time = 15.80 : yOla 100

050

Y - Axis
o

2090 0.0

X - Axis

= Energy budget is debated (Birn et al. 2010, Aunai et al. 2011),
and should be measured in experiments.



Fast reconnection 7
Are we talking about fast reconnection ?

Z - Magnetic Field @ time = 0.00 : L 0.40

200

0.0 0.00

Y - Axis

0.0

29900 :
X - Axis

= Yes. Electron jets at the separatrix, results in a Hall electric
field : the Hall component of the magnetic field (Mandt et al.

1994)... should also be measured in experiments.



Plasma dynamics with B =0
If one doubts about magnetic reconnection in HEDP :

200 Electron Densit time = 1540 :y0lb 100

0.0
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2093 0.00

X - Axis

= Totally diferent picture,



Plasma dynamics with B =0

If one doubts about magnetic reconnection in HEDP :
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= Totally diferent picture,



Non-coplanar reconnection

Depends on the angle : salient or reflex ?

Z - Magnetic Field @ time = 0.00 ¢
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= Is the Hall magnetic field a cause or a consequence of magnetic
reconnection 7



Non-coplanar reconnection

Z - Magnetic Field @
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= No magnetic reconnection onset with the "wrong” Bz.



Consequence for the reconnection rate
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= Reconnection is triggered later, but at a same rate.



Short-term program on B-field

INRS _ reconnexion experiments L
Bt

A beamtime is planned
at GSl in 2014 using
Phelix

Aim: to study
symmetric (a) and non-

symmetric (b)(c) and (d) » g }m
reconnexion %/ Tt N
(c)



Long-term program 7
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. Study macroscopic large-scale consequences D))((

of reconnection (solar corona)

INRS

. AiIms:

- Importance of so-called guide field (use of pulsed-
power unit we developed coupled to the laser)

— ldentification of QSLs and study of energy release
in slip-running reconnection (using the OHM code)



