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Two reconnection problems are considered. The first problem concerns global physics. The
plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this
equilibrium can be uniquely characterized by a set of constraints. During reconnection and
independently of the local reconnection physics, these constraints can be uniquely evolved from
any initial state. The second problem concerns Petschek reconnection. Petschek’s model for fast
reconnection, which is governed by resistive MHD equations with constant resistivity is not
validated by numerical simulations. Malyshkin et al. [Phys. Plasmas 12, 102920 (2005)], showed
that the reason for the discrepancy is that Petschek did not employ Ohm’s law throughout the
local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including
Ohm’s law throughout the entire diffusion region, removes the discrepancy. This derivation is
based largely on Petschek’s original 1964 calculation [in AAS-NASA Symposium on Solar Flares
(National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p.
425]. A useful physical interpretation of the role which Ohm’s law plays in the diffusion region
is presented.VC 2011 American Institute of Physics. [doi:10.1063/1.3628312]

I. INTRODUCTION

There are two interesting problems concerning recon-
nection that I address in this paper. The first problem con-
cerns the plasma dynamics in the region outside the
reconnection layer, the global region. A proper treatment of
the plasma in this region is necessary to derive proper bound-
ary conditions for the reconnection layer.

For reconnection velocities that are not too fast com-
pared with the Alfven speed, this region is in magnetostatic
equilibrium. As magnetic reconnection of field lines transfers
flux from one part of the global region to another, the global
equilibria progress in a definite way that is independent of
the physics in the reconnection layer. This was first shown
by Uzdensky et al.,12 making use of the variational principle
of Kruskal and Kulsrud.2 This progression puts a stronger
constraint on the boundary conditions of the reconnection
layer than is generally appreciated. Their proof of this varia-
tional principle is incomplete, and I present a complete proof
in Sec. II.

The second interesting problem is: why is Petschek’s
fast reconnection not validated by numerical simulations?
The reason has to do with the build-up of that component of
the magnetic field which extends across the reconnection
layer, and which supplies the necessary tension force for his
model. This build-up is slower than Petschek supposed, lead-
ing to a longer diffusion region, and a slower reconnection
rate than he predicts. Malyshkin et al.5 mathematically
explained this lack of validation by showing that the problem
was in Petschek’s incorrect application of Ohm’s law in the
diffusion region. In Sec. III, I show how this equation should
have been treated, by repeating Petschek’s original calcula-
tion. At the end of this section, I present a useful physical
interpretation of the physics of the action of Ohm’s law, in
building up the transverse field in the diffusion region.

II. GLOBAL EQUILIBRIA

The geometry of the global region is indicated in
Figure 1, which is a poloidal cross section of the reconnec-
tion geometry. In this paper, I assume that the reconnec-
tion geometry is toroidal, as it is in the Magnetic
Reconnection Experiment (MRX). (One can also regard
two-dimensional reconnection as toroidal if one identifies
two different poloidal cross sections.) The local regions in
the figure consist of the thin reconnection layer D and the
separatrix layer E. The reconnection layer D is thin if the
reconnection velocity is slow compared with the Alfven
speed. Plasma flowing out of the thin reconnection layer
flows into the separatrix layer at Alfvenic speeds, but its
velocity is quickly dissipated by parallel viscosity in such
a short time that only a small amount of flux is recon-
nected. Thus, the separatrix region is also thin. Therefore,
global-reconnection theory can be considered to be a
boundary-layer theory.

These local layers divide the rest of the geometry into
three regions. In regions A and B the lines of force have not
been reconnected. The lines in region C are the reconnected
lines. Because the global region has a larger volume than
the local region, the velocities in it are small, and the sepa-
rate regions A, B, and C are each in separate magnetostatic
equilibrium. Moreover, the total pressures, pþB2=8p, on
either side of D and E are equal, so that the three regions
are in magnetostatic force balance with each other. I refer
to the equilibrium of the entire region as the global
equilibrium.

As the reconnection progresses, flux is transferred from
A and B into C, and the global equilibrium changes. How-
ever, Uzdensky et al. showed, from a variational principle,
that a set of constraints exist such that every global equili-
brium is uniquely specified by the values taken by this set of
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constraints. Further, if the values of the set of constraints are
known at an initial time, they can be found at any later time
solely from the physics in the global region, and independ-
ently of the physics in the local region. This is really not so
surprising, when one considers the problem as a boundary
layer problem, since the global dynamic forces are larger
than the transverse forces in the layers.

The example provided by shock conditions in hydrody-
namics makes this plausible. The Rankine-Hugoniot condi-
tions determine the hydrodynamics of the fluid outside of the
shock region independently of the physics inside the shock
layer.

A complete set of constraints which determine the equi-
librium, exist under the assumption that the magnetic field in
each of the three regions A, B, and C has magnetic surfaces.
Let a magnetic surface in regions A, B, or C be labeled by
wA, wB, or wC, respectively. The w0s are equal to the poloidal
fluxes included inside the surfaces. Under this assumption
the constraints defined on each surface are:

• M(wA), M(wB), or M(wC), the mass included inside the
surface.

• U(wA), U(wB), or U(wC), the toroidal flux included inside
the surface.

• s(wA), s(wB), or s(wC), the entropy s¼ p=qc on the surface.

Now, choose three sets of functions, M(w), U(w), s(w),
(defined differently in each of the three regions) to represent
the constraints. Consider a state S0, consisting of B(r), p(r),
and q(r) defined throughout the global regions and such that
these constraints are satisfied on each surface. Assume that
the state S0 has an energy

E ¼
ð

B2

8p
þ p

c# 1

" #
d3x; (1)

which is a minimum relative to the energy of any other state
with the same values for the constraints. The integral is to be
taken over all the global regions. This is to say, if one

consider any other neighboring state S1 with the same values
for the constraints, its energy will be greater.

The set of constraints has been constructed so that,
equality of their values for any two neighboring states,
means it is possible to connect these two states by an ideal
displacement n(r). That is to say, if one starts with the state
S0, and carries out this displacement, then it will be trans-
formed into state S1. The existence of this displacement will
appear clear after a little thought. Its existence in each of the
regions A, B, and C is rigorously established in the paper of
Kruskal and Kulsrud.2

At a fixed point, n changes B by

dB ¼ r$ ðn$ BÞ; (2)

and p by

dp ¼ #n 'rp# cpr ' n: (3)

Then the change in the energy E, in the A region is

dEA ¼
ð

A
B 'r$ð n$BÞ

4p
# 1

c# 1
n 'rp# c

c# 1
pr ' n

$ %
d3x

þ
ð

SA

n ' n B2

8p
þ p

c# 1

" #
d2x: (4)

(The surface term takes into account, the fact that the two A
regions of the two states may not be the same.) The sum of
the changes in energies in the three regions A, B, and C must
vanish for all choices of the displacement n(r).

One can transform the various terms in the above inte-
gral in the usual way by vector integration by parts. The
result, keeping the integrated terms, is

dEA ¼
ð

A
n ' ð#j$ BþrpÞ #r ' ½B$ ðn$ BÞ)½

# c
c# 1

r 'ð pnÞ
%
d3xþ

ð

SA

n ' n B2

8p
þ p

c# 1

" #
d2x:

Now, apply Gauss’s theorem to the divergence terms, and
use the fact that B ' n ¼ 0 on the surface SA, to combine
them with the other surface terms. The result is

dEA ¼
ð

A
n ' ð#j$ BþrpÞd3x

#
ð

SA

n ' n pþ B2

8p

" #
d2x: (5)

The energy of the state S0 is to be a minimum with respect to
that of the neighboring states with the same constraints.
Therefore, dE ¼ dEA þ dEB þ dEC must vanish for all n. (Of
course, any different choice of n corresponds to a different
neighboring state S1, but this is of no consequence since the
different state still has a larger energy and satisfies the
constraints.)

Take any point in A not on a boundary of A. Then
one can choose n to be non zero and arbitrary, at and near
that point, but vanishing elsewhere including on the
boundary.

FIG. 1. Example of two cylinders.
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Then

j$ B ¼ rp; (6)

at that point, and at every other point not on the boundary.
With this equation, the change in energy of region A

reduces to

dEA ¼
ð

SA

ðn ' nÞ pþ B2

8p

" #
d2x: (7)

Now, after adding the contributions to dE from regions
B and C, the sums from the various surface terms will cancel,
if and only if the jump in pþB2=8p vanishes over all the
gaps between the regions. That is, across every point on
D and E

pþ B2

8p

& '
¼ 0: (8)

This is because, the values of n ' n are equal in magnitude
and opposite in sign at every contact surface. Equations (6)
and (8) show that the minimum energy state S0 is a global
equilibrium state.

Conversely, if the state S0 is a magnetostatic state satis-
fying both Eqs. (6) and (8), then one can trace the argument
backward to show that dE ¼ 0, and that S0 has a minimum
energy relative to any neighboring state satisfying the
constraints.

At this point in the discussion, it is clear that for a given
set of values of the constraints, U(w), M(w), and s(w), the
minimum energy state is in global magnetostatic equilib-
rium, and the unique global magnetostatic equilibrium which
has the specific values for the constraints. That is to say,
given any values of the set of constraints, there is a unique
equilibrium with these values. Therefore, there is a one-to-
one correspondence between all values for our sets of con-
straints and all global magnetostatic equilibria. (Note that
this set of constraints is a complete set, and this complete-
ness is necessary for the one-to-one correspondence. If one
constraint were missing, there would be an equilibrium state
that is not a minimum energy state since, its energy could be
lowered by a non ideal transformation to a neighboring equi-
librium state that would satisfy all of the constraints except
the missing one.)

How can one make use of this theorem, and how should
one choose the values for the constraints? Notice that the
constraints are ideal constants of the motion, and during any
ideal evolution of the state, even a non-dynamic evolution,
these constraints are conserved.

Consider the evolution of the global equilibria during a
reconnection. The fluxes in regions A and B, decrease as the
reconnection proceeds, but the values for the constraints as
functions of the w0s in the two regions, remain the same over
the range of w0s, except at their limiting values near regions
D and E. Similarly, the constraint functions in region C
remain the same functions of its w over their range in region
C, except at the limiting value near the separatrix. As the
ranges in wA and wB decrease by an element of flux, the
range of wC increases by the same amount. Further, the value

of U at the limit of the range of wC is equal to the sum of its
values at the limits of wA and wB.

However, the entropy at the maximum value of wC,
s[wC(max)], appears to be undetermined, because of the dis-
sipative processes in the reconnection layers D and E. Does
this mean that its value depends on the details of the physics
in these layers? The answer is no. In the case that the exter-
nal boundary of region C does not change, the total energy
also cannot change. After the reconnection of an element of
poloidal magnetic flux dw, the total energy must be the
same. However, the regions D and E are so thin, that they
contain a negligible amount of energy. Thus, it is only the
total energy in the global region that must remain constant.
But this energy is uniquely determined by the global magne-
tostatic equilibrium, which is determined by the values of
the constraints. Remember that the only value of the con-
straints that is undetermined by the ideal evolution of the
global equilibrium is the entropy s[wC(max)]. Thus, energy
conservation determines this one unknown value of the con-
straints. (Notice that there is an analogous situation in the
hydrodynamic shock case; where the conservation of energy
determines the jump in the entropy across the shock.)

It is remarkable that the sequence of global equilibria,
which are controlled by the known sequence of the values of
the constraints, is uniquely predetermined. The sequence is
independent of the physics of the reconnection processes.
This is true whether the reconnection model is that of Sweet-
Parker,6,10 Petschek,7 or a model derived from two-fluid
physics. This uniqueness arises because the values of the
constraints can be evolved uniquely for the three regions,
when energy conservation is used to determine the one value
of the one constraint that does not evolve ideally.

It should be noted that, if the external boundary is mov-
ing, the total energy will change because work is done by the
boundary. But this work is pdV work. Thus, the total global
energy can be followed self-consistently independently of
the rate at which the work is done. The amount of work done
is independent of the rate of passage of the equilibria through
the sequence, as long as the reconnection rate is slow com-
pared to the rate of change of the external boundary. Thus,
the unknown entropy constant s[wC(max)], can still be deter-
mined. The global energy at the time when a given equilib-
rium is reached depends only on the amount of external
work done during this time. It is thus the same, no matter at
what rate the work is done. Therefore, our conclusion as to
the independence of the global equilibria of the local physics
is still valid.

On the other hand, the time evolution of the ranges of
wA and wB, (and correspondingly the evolution of the range
of wC) is entirely determined by the reconnection process,
and does depend on the local physics.

For each of the magnetostatic equilibria in the sequence,
the geometry and size of regions A, B, and C are determined.
Thus, the positions and lengths of the regions D and E, are
also determined. Further, B and p are known throughout the
global regions, and in particular their values are known on
the surfaces of D and E. Thus, at any given time, the local
boundary conditions are determined by the corresponding
global equilibrium in the sequence. This interplay between
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the global and local dynamics is exactly what is expected in
a boundary-layer theory.

It is sometimes an advantage to view phenomena in
reconnection physics from the global point of view. For
example, if the reconnection is being forced by changing the
external boundary, any pile-up of flux can be viewed as due
to the changing global equilibrium, just as well as due to the
lack of speed of the reconnection. In fact, unless the time for
the change of the global equilibrium is slow enough to be
comparable with the time to reconnect a finite amount of
flux, the pile-up should be regarded as entirely a result of the
changing global equilibria. In nature, the reconnection rate
tends to be slow compared to the rate of evolution of the
global equilibrium, but in laboratory experiments, such as
the MRX, it may be comparable.

III. PETSCHEK RECONNECTION

As far as rapid magnetic reconnection in the large sys-
tems that occur in astrophysics and space physics is con-
cerned, there is no question that a process such as that
proposed by Petschek is of vital importance. No other mech-
anism except Petschek’s comes close to producing fast
reconnection in systems of such large size. Petschek’s key
idea is that resistive diffusion can be replaced by wave action
in converting magnetic energy into other forms. The mag-
netic energy can be released by unfolding the reconnected
lines (see Figure 2).

In more detail, Petschek showed that if there is a mag-
netic field perpendicular to the reconnection layer, the
incoming reconnection velocity can be balanced by a wave
propagating along this field. Further, the tension force asso-
ciated with this field accelerates plasma downstream faster
than the flows driven by pressure gradients. This can allow a
more rapid expulsion of the plasma from the reconnection
layer than in the Sweet-Parker model.

Thus, it is disappointing that numerical simulations do
not support the Petschek mechanism. The numerical simula-
tions show that when resistive-MHD equations with constant
resistivity apply, his mechanism does not lead to fast recon-
nection.1,13 It is very important to intuitively understand why
such a powerful reconnection mechanism fails, in order that
a way can be found to restore it. An important advance was
made towards this by Malyshkin et al.,5 who showed that
this failure is related to extra terms in Ohm’s law which Pet-
schek did not include.

The simplest way to explain the physics that is causing
the problem is to trace through Petschek’s original calculation.

In this section, I present his calculation in some detail,
and follow it logically up to the point at which the additional
terms in Ohm’s law play a role. I then show that these terms
restrict Petschek’s conclusion: that his mechanism can lead
to very fast reconnection. I then present a physical interpreta-
tion that shows why these terms are important.

To make the discussion clear, refer to Petschek’s origi-
nal diagram in Figure 2. Petschek takes his coordinate sys-
tem with y in the outflow direction and x across the layer.
The two important quantities in his theory are: the thickness
of the reconnection layer, d, and the transverse field,
Bx¼ bxB0. These quantities are both functions of y.

The key point in his theory is that the incoming flux is
balanced by wave propagation along the x axis as well as by
resistive diffusion. Thus, his first equation is

M0 ¼
ux0
VA

¼ k
VAd

þ jbxj; (9)

where M0¼ ux0=VA is the Mach number of the reconnecting
flow. I have introduced the notation k¼ c2=4pr, with r the
conductivity.

For small y, say y< y*, jbxj is small, and the incoming
flow is mainly balanced by resistive diffusion. If y is large,
(y> y*) it is balanced by wave propagation. When y> y*,
jbxj is large enough to balance the incoming flow by itself,
it becomes constant, and d can increase. (In point of fact,
Eq. (9) is only valid for very large and very small y. For
y comparable to y*, it is necessary to keep both terms in
this equation. This is the nub of the difficulty with his
model.)

Petschek next introduces the equation of continuity,

ux0y ¼ vðyÞdðyÞ; (10)

where v is the flow in the y direction along the layer. The
momentum equation is

d

dy
ðqv2dÞ ¼ #B0Bx

4p
: (11)

FIG. 2. Petschek’s diagram.

111201-4 Russell M. Kulsrud Phys. Plasmas 18, 111201 (2011)

Downloaded 26 Jan 2012 to 198.125.234.88. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Notice that Bx is negative in the upper part of his diagram,
while ux0 is positive in the left side of his diagram. To keep
the signs straight, I write the equations only for the upper left
part of his diagram.

These equations are valid, both in the small-y diffusive
region and the large-y wave propagation region. For simplic-
ity, Petschek combines them into the single equation

M2
0

d

dy

y2

d

" #
¼ #bx: (12)

Now, at large y, the diffusive term in Eq. (9) can be
neglected, and

M0 ¼ #bx; y > y*: (13)

Substitution of this equation into Eq. (12) yields the impor-
tant result

dðyÞ ¼ M0y; y > y*: (14)

This equation shows that the width of the outflow channel
increases with distance y.

Next, in the diffusive region, y < y*, the first term of
Eq. (9) shows that

d ¼ k
VAM0

; y < y*; (15)

is a constant.
Equations (10) and (15) show that the velocity v

increases linearly with y to keep up with the incoming flow.
Its acceleration is produced by magnetic tension, so that #bx
must also increase linearly with y. From Eq. (12)

bx ¼ # 2M3
0VA

k
y; y < y*: (16)

Now, when y reaches y*, jbxj will have grown to the point
at which wave propagation takes over the balancing of the
incoming flow. That is, at y¼ y*, jbxjmust equalM0. Thus,

y* ¼ k
2VAM2

0

: (17)

For any given Mach number of the incoming flow M0, the
length of the diffusion region, y* is given by this equation.
Now, since all of Petschek’s equations are satisfied, it was
reasonable for him to suppose that any reconnection velocity
can be accommodated by the proper choice of y*. (There
actually is a logarithmic limit on the reconnection rate which
Petschek emphasized, but I here ignore.)

Before proceeding further, note that the above equations
reduce to those of Sweet-Parker in the diffusive region. In
fact, the solutions for d, v, and bx in the diffusion region, can
be written in terms of y* as

d ¼ k
ux0

; v ¼ 1

2

y

y*
VA; (18)

and

bx ¼ # ux0
VA

y

y*
: (19)

These equations are exactly those of the Sweet-Parker model
with the global length set to y*.

Now consider the z component of the full Ohm’s law in
the diffusive region,

cE# vbxB0 ¼
cjz
r

¼ # k
d

B0 þ B00
0

y2

2

" #
; (20)

where the primes on B0 denote y derivatives. The first terms
on the left and right hand sides cancel. Making use of Eqs.
(18) and (19) for v and bx, the remaining terms in this equa-
tion are:

# vbxB0 ¼
ux0B0

2

y

y*

" #2

¼ # kB00
0

2d
y2 ¼ # ux0B00

0

2
y2; (21)

or

B0

y*2
¼ #B00

0: (22)

But B0 is the reconnecting field just outside of the layer, so
that B00

0 is determined by the global equilibrium. (This, as has
been shown in Sec. II is independent of the reconnection
process.) Thus, its scale must be the global length L, and

B00
0 ¼

d2B0

dy2
+ #B0

L2
: (23)

Therefore, from Eq. (22), y* + L. This means that Petschek’s
assumption, that y* , L is inconsistent with the complete set
of equations.

From Eq. (17), with y* + L,

u2x0 +
kvA
2L

; (24)

the Sweet-Parker result. This explains why numerical simu-
lations of Petschek reconnection find the Sweet-Parker
reconnection rate.

A physical interpretation of the role of Ohm’s law is:
that the term vBx represents the rate at which the Bx field
lines are swept downstream, while the cj00=r term is the rate
at which the incoming By field lines rotate into Bx field lines.
This picture of the motion of the field lines was suggested in
two earlier papers.3,4

This interpretation can be seen more quantitatively by
rewriting Ohm’s law as

Eþ ðvþ vslipÞ $ B

c
¼ 0; (25)

in which I introduce the slip velocity vslip to replace the
resistive term, by defining it to satisfy

gj ¼ # vslip $ B

c
; (26)

so that vslip¼ gcj$B=B2.
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In this form of Ohm’s law it is clear that, in the diffuse
region a field line moves with the plasma velocity, v, plus
the slip velocity, vslip. Hence, a field line is transported by
the plasma velocity v in the y direction, and sheared in the x
direction by the y gradient of vslip,x. The scale of the slip ve-
locity is of order the global scale L, and its magnitude is of
order the reconnection velocity ux0.

Thus, the line will be sheared, or rotated, at the rate

dh
dt

¼ dvslip;x
dy

+ ux0y

L2
; (27)

where h¼ bx is the angle the line of force makes with the y
axis. At the same time, it will be transported in the y direc-
tion at the velocity

dy

dt
¼ v ¼ y

2y*
vA: (28)

Upon dividing these two equations

dh
dy

¼ 2ux0y*

L2VA
; (29)

so that the line of force rotates through an angle Dh
+ bx (y*=L)

2. Dh¼ bx is the change in h that Petschek needs
for his theory. Thus, under this interpretation, the diffusion
region must have a global length, to be long enough to allow
sufficient rotation to generate the required downstream field
Bx.

So far, I have restricted the discussion to a constant spa-
tial resistivity. If the resistivity is non constant and varies on
a shorter scale, Lg, than L, then the shear in vslip,x is increased
by L=Lg, and the Petschek theory applies with the shorter
length y* + Lg. This result is in accord with the numerical
simulations in Refs. 8, 9, and 11. It is of considerable interest
to apply these intuitive ideas, which involve field line
motion, to other reconnection models.

To summarize, Petschek’s error was to apply Ohm’s law
only for y¼ 0 and y> y*, ignoring it in the region 0< y< y*.
It is in this region that the build-up of the Bx field occurs.
Petschek simply assumed this build-up could be arbitrarily
fast because he found no equation restricting it. By properly
including the full Ohm’s law in this region, the rate of build-
up of Bx, and thus y*, are determined. As a consequence, the
reconnection rate is slower than the “Petschek” rate.

IV. CONCLUSION

In the first part of this paper, I have shown that: recon-
nection physics in the global regions can be investigated
more systematically by making use of a variational principle,
to uniquely specify the global equilibrium in terms of a set
of values for a set of constraints. The evolution of these val-
ues then gives the evolution of its equilibrium. I show that
this evolution proceeds independently of the local physics in
the reconnection and separatrix layers. In the second part, I
have shown why the Petschek mechanism acts differently in
numerical simulations than Petschek might have expected,
and I give a physical interpretation to intuitively explain why
this happens. This interpretation should be explored more
fully to determine whether it can lead to other new physics
in reconnection theory.
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