Detection of an electron beam in a high density plasma via an electrostatic probe

Stephen Majeski¹, Jongsoo Yoo², Stewart Zweben² and Masaaki Yamada²

¹ Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
² Princeton Plasma Physics Laboratory, Princeton, NJ 08543, United States of America

E-mail: jyoo@pppl.gov

Received 5 December 2017, revised 19 March 2018
Accepted for publication 10 April 2018
Published 8 May 2018

Abstract
An electron beam is detected by a 1D floating potential probe array in a relatively high density (10¹²–10¹³ cm⁻³) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.

Keywords: electron beam detection, floating potential, field line mapping

1. Introduction
The electron beam has often been used to trace the vacuum magnetic field line topology in plasma devices [1–3]. Since the motion of the electron beam is dominated by the parallel component, field line mapping can be achieved by detecting the light from interaction between the electron beam and the low-density background gas via a fast camera. In a high density plasma, however, this method is not viable, as background light becomes dominant over the light from the electron beam. The measurement of the field line topology in a high density plasma is important for some laboratory experiments such as studies of magnetic reconnection [4]. Although these measurements are usually done by in situ magnetic probes [5, 6], the direct measurement of the 3D field line topology or stochasticity is limited by technical difficulties such as limited number of digitizer channels and limited frequency response of magnetic pickup coils.

Here, an alternative method of locating an electron beam is presented, which can be potentially used to directly measure the field line topology in a high density plasma. In particular, a 1D floating potential (V_f) probe array with 25 tips has been used to measure the perturbation of the floating potential by a 200 eV (200 V accelerating potential) electron beam in a high density (10¹²–10¹³ cm⁻³) plasma with an electron temperature of about 5 eV. The beam perturbs the floating potential after traveling about 0.20 m along the magnetic field line. In section 2, a short description of the apparatus is presented. In sections 3 and 4, measurements of the floating potential perturbation are compared with theoretical values. Finally, we discuss a possible application of this method to the measurement of the magnetic field line topology.
The electron density is relatively high, which is typically $1 \times 10^{13} \text{ cm}^{-3}$ and the electron temperature is relatively low, ranging from 3 to 15 eV. Although MRX has a relatively complex magnetic geometry at the center of the device, the field line is straight near the wall where all the measurements have been carried out. This straight field line has been confirmed by detecting light from the electron beam without a background plasma, as well as with magnetic probes during discharges. As the vessel is cylindrical, where necessary we will make use of the cylindrical coordinate system (R, θ, Z). Note that due to the scale of the experiment compared to that of MRX, θ will be in units of length, and is used to indicate the direction normal to the $R-Z$ plane.

To detect the electron beam in a high density plasma, a floating potential probe array was constructed. The layout of the 25 probe tips is shown in the top part of figure 1. The maximum resolution along the radial (R) direction is 0.35 mm and the total coverage of the probe is 15.6 cm. The probe array is inserted into the MRX chamber radially, perpendicular to the axial magnetic field generated by internal and external coils, with the tips facing the filament. As shown in figure 1, the probe array is separated from the electron beam source by 0.20 m along the magnetic field. The electrostatic probe contains a number of points where two probe tips are located on either side of the center line of the probe. These tips are 2 mm apart and the value of V_f at these two tips was averaged to imitate a single measurement point. Due to the effective width of the beam and radial variation of V_f over 1 mm, we assume here that the difference between V_f along the center line of the probe and at the measurement points is small. The filament is a tungsten filament, with a coil diameter of 1.3 mm, and a wire diameter of 0.1 mm. The length of the filament in the radial direction is 1.3 cm, and it contains approximately 47 turns in that length.

The electron beam is generated by an emitting tungsten filament, biased a few hundred volts negative with respect to the stainless steel vacuum vessel of MRX. Figure 2 shows the schematic for the electron beam apparatus in MRX. The filament current is supplied by a high-current power supply, while the bias voltage for the electron beam is provided by a high-voltage power supply. A typical current through the filament without a plasma is about 4 A. Since the bias voltage is much larger than the plasma potential at the filament, the beam energy is mostly determined by the bias voltage. The beam electrons stream to the floating potential probe array and eventually to the chamber along the open field lines. The magnetic field strength at the beam location is about 500 Gauss, enough to magnetize the beam electrons. The radial location of the filament is $R = 0.62$ m; under this straight field line geometry, the beam will arrive at the floating potential probe with the central radial location of $R = 0.62$ m. The electron density and temperature of the background plasma are measured by a triple Langmuir probe [7]. The probe is placed at the midpoint of the beam path, but separated azimuthally by 4 cm to avoid direct interaction with the electron beam.

3. Results

Figure 3 shows time profiles of the electron density (n_e) and electron temperature (T_e), measured by the triple Langmuir probe. Data is averaged over 50 discharges and typical errors associated with these measurements are less than 10%, especially after 400 μs. The plasma density rapidly increases after the bulk plasma is created at 214 μs. During this time, the ratio of the beam electron density (n_b) to the background electron density (n_e) is small ($<10^{-6}$). At these times ($<400 \mu$s), the perturbation is relatively small ($\sim 1 \text{V}$) and is hard to be quantified due to effects from the plasma formation at $t = 214 \text{ ms}$. After 400 μs, the ratio is typically about 10^{-3}, so the perturbation from the electron beam can be clearly detected by the V_f probe array. The amount of the floating potential perturbation can be easily controlled by changing the beam ratio (n_b/n_e). Here, the maximum value of n_b/n_e is less than 1%, such that instabilities driven by a strong electron
beam [8, 9] are not expected to exist in this plasma. After 400 μs, the electron density is less than $1 \times 10^{13} \text{ cm}^{-3}$ and the typical electron temperature is about 5 eV, as shown in figures 3(a) and (b), respectively.

An example of the floating potential profile created by the floating probe array is presented in figure 4. It displays the profile for various beam probe conditions: a cold biased filament, a hot unbiased filament, a cold unbiased filament, and a hot biased filament. This is shown in order to display the effects of the individual functions of the beam system on V_f. The perturbation due to the beam can be clearly observed downstream. Note that the central radial location of the V_f perturbation is the same as the location of the filament ($R = 0.62 \text{ m}$), which is consistent with the straight field line geometry. Thus, the field line mapping via the floating potential measurements is possible in this relatively high-density plasma.

The amount of V_f perturbation depends on the ratio of the beam and plasma densities (n_b/n_i), the electron temperature (T_e), and the beam energy. In the absence of a beam, V_f can be found by equating the electron current and the ion saturation current drawn by a V_f probe array tip [10]:

$$Aen_e \sqrt{\frac{kT_e}{2\pi m_e}} \exp \left(\frac{e(V_f - V_p)}{kT_e} \right) = \exp \left(-\frac{1}{2} \right) Aen_e C_i = I_{sat},$$

(1)

where A is the area of the probe tip, m_e is the electron mass, $C_i = \sqrt{kT_e/m_i}$ is the sound velocity with the ion mass, m_i, e is the electron charge, V_p is the plasma potential, and I_{sat} is the ion saturation current. From equation (1), the floating potential without an electron beam is

$$V_f - V_p = \frac{kT_e}{e} \ln \left[\exp \left(-\frac{1}{2} \right) \sqrt{\frac{2\pi m_e}{m_i}} \right]$$

$$= -(3.3 + 0.5 \ln \mu) \frac{kT_e}{e},$$

(2)

where $\mu = m_i/m_p$ is the ratio of the ion mass to the proton mass, m_p.

With the presence of an electron beam, the beam current to the probe, $I_b = -en_e A_p \langle v_b \rangle$, has to be added to the left-hand side of equation (1), which makes the floating potential decrease. Here, $\langle v_b \rangle$ is the average beam velocity, and A_p is the probe area seen by the electron beam. Due to the beam-plasma interaction, it is unlikely that all of beam electrons maintain the initial velocity, so $\langle v_b \rangle$ is a unknown quantity. For our conditions, the Larmor radius of the beam electrons is a unknown quantity. But, the electron temperature have stabilized. The amount of V_f perturbation depends on the ratio of the beam and plasma densities (n_b/n_i), the electron temperature (T_e), and the beam energy. In the absence of a beam, V_f can be found by equating the electron current and the ion saturation current drawn by a V_f probe array tip [10]:

$$Aen_e \sqrt{\frac{kT_e}{2\pi m_e}} \exp \left(\frac{e(V_f - V_p)}{kT_e} \right) = \exp \left(-\frac{1}{2} \right) Aen_e C_i = I_{sat},$$

(1)

where A is the area of the probe tip, m_e is the electron mass, $C_i = \sqrt{kT_e/m_i}$ is the sound velocity with the ion mass, m_i, e is the electron charge, V_p is the plasma potential, and I_{sat} is the ion saturation current. From equation (1), the floating potential without an electron beam is

$$V_f - V_p = \frac{kT_e}{e} \ln \left[\exp \left(-\frac{1}{2} \right) \sqrt{\frac{2\pi m_e}{m_i}} \right]$$

$$= -(3.3 + 0.5 \ln \mu) \frac{kT_e}{e},$$

(2)

where $\mu = m_i/m_p$ is the ratio of the ion mass to the proton mass, m_p.

With the presence of an electron beam, the beam current to the probe, $I_b = -en_e A_p \langle v_b \rangle$, has to be added to the left-hand side of equation (1), which makes the floating potential decrease. Here, $\langle v_b \rangle$ is the average beam velocity, and A_p is the probe area seen by the electron beam. Due to the beam-plasma interaction, it is unlikely that all of beam electrons maintain the initial velocity, so $\langle v_b \rangle$ is a unknown quantity. For our conditions, the Larmor radius of the beam electrons is on average comparable to the size of the probe array tips, so we set $A_p = A$. If equation (1) with I_b added is solved for V_f and equation (2) is subtracted, the change in the floating
potential (ΔV_f) is given by [11]
\[
\Delta V_f = \frac{kT_e}{e} \ln \left[1 + \exp \left(\frac{1}{2} \frac{J_b A_p}{en_s AC_i} \right) \right] = \frac{kT_e}{e} \ln \left[1 + \frac{I_b}{I_{sat}} \right],
\]
(3)

where $J_b = -en_b \langle v_b \rangle$ is the current density of the beam.

To determine the effective width of the profile in the θ direction, the current density profile in the $R-\theta$ plane of the electron beam, $J_b(R, \theta)$, has to be specified. Here, it is assumed to be Gaussian in both directions:
\[
J_b(R, \theta) = \frac{j_0}{2\pi\sigma_R\sigma_\theta} \exp \left(-\frac{(R - a)^2}{2\sigma_R^2} - \frac{\theta^2}{2\sigma_\theta^2} \right),
\]
(4)

where $a = 0.62$ m is the radial location of the beam and the θ beam location is on the radial axis of the probe, which we have set to 0 mm. σ_R is the effective width in the θ direction, and j_0 is the normalization factor. The effective radial width of the beam, σ_R, is determined to be 7.7 mm from the averaged full width at half maximum (FWHM) of floating potential profiles (FWHM = $2\sigma\sqrt{\ln 2}$). This width agrees well with the length of the filament and therefore the emitting surface along the radial direction, which is about 13 mm. This indicates that any broadening of the beam is minimal. The normalization factor, j_0, is determined by the following constraint:
\[
I_m = \int J_b(R, \theta) dRd\theta = 2j_0,
\]
(5)

where I_m is the measured beam current. It should be noted that the contribution from the ion saturation current drawn by the filament is subtracted from the total current in order to obtain the true beam current. The factor of 2 on the right-hand side comes from the fact that the electron beam propagates along both $+Z$ and $-Z$ directions. By solving equation (5) for I_m, setting $a = 0$ in equation (4), and entering this value for $J_b(R, \theta)$ into equation (3), we solve for σ_R given ΔV_f and plasma parameters. We found σ_R to be on average 1.6 mm.

The beam density can be also approximated under the assumption of the isotropic beam electron emission from the filament and minimal beam-plasma interaction. In this case, we can assume the average parallel velocity is $\langle v_p \rangle = (2/\pi)^{1/2}eE_0/m_e$, where E_0 is the bias voltage for the electron beam. With this value, the beam density profile can be determined by $n_b = -J_b/e \langle v_p \rangle$, which typically gives n_b on the order of 10^{12} cm$^{-3}$.

Figure 5 shows an example of the measured floating potential profile with the presence of an electron beam for $\theta = 0$. It shows a clear potential well centered near $R = 0.62$ m. The red curve denotes the potential profile calculated by equation (3) after $J_b(R, \theta)$ is determined from the measured beam current ($I_m = 0.45$ A in this case). The background electron density is 3×10^{12} cm$^{-3}$ and temperature is 4.5 eV, which are measured by the reference Langmuir probe. These two profiles are in good agreement except the slight positive slope in the measured profile, which is caused by a remnant electric field from the plasma formation [12]. As shown in figure 4, the slope exists even without the beam. This agreement justifies the process of determining the local beam current density. We repeated the profile measurement under different plasma conditions, but there is no noticeable broadening of the electron beam if $n_b/n_e < 1 \times 10^{-3}$.

The above formulation assumes a weak beam-plasma interaction while the electron beam travels to the floating potential probe. Negligible broadening of the electron beam supports this idea. A completely different explanation, however, is possible; the electron temperature increase via a strong beam-plasma interaction can lead to the floating potential perturbation. From equation (2), the floating potential can decrease with respect to V_{pe} if the local electron temperature T_e increases. The plasma potential may also be perturbed [13] but the change is expected to be minimal under the assumption of the strong beam-plasma interaction and small n_b/n_e. Assuming an isotropic electron distribution and negligible cross-field heat transport, the electron temperature increase by the electron beam is given by
\[
\frac{3}{2} \frac{n_e k\Delta T_e}{e} \approx n_b E_0.
\]
(6)

If the electron beam only increases the parallel electron temperature, the factor $3/2$ and ΔT_e should be replaced by
The two equations have a different dependence on E_b, T_e, and n_e. For the case of the weak beam-plasma interaction (equation (8)), ΔV_f has a weak, if any, dependence on E_b, as n_e scales linearly with I_m/E_b. For the case of strong beam-plasma interaction (equation (7)), ΔV_f is larger with a larger E_b.

Figure 6 shows radial V_f profiles for two different values of E_b, when other key parameters are very similar; for $E_b = 200 \text{ V}$ (blue curve), $I_m = 0.41 \text{ A}$, $T_e = 5.3 \text{ eV}$, and $n_e = 1.8 \times 10^{12} \text{ cm}^{-3}$, while $I_m = 0.40 \text{ A}$, $T_e = 5.2 \text{ eV}$, and $n_e = 1.9 \times 10^{12} \text{ cm}^{-3}$ for $E_b = 100 \text{ V}$ (red curve). The two profiles are almost identical, even though the E_b value is different. Together with the negligible broadening, these profiles support that the beam-plasma interaction is not strong enough to thermalize the electron beam while it travels about 0.20 m.

Figure 7 demonstrates the consistency of equations (3)–(5). This was done by using the ΔV_f perturbation at $R = 0.62 \text{ m}$ to estimate what the emitted current from the filament should be.

This data was obtained from 50 discharges at four different times (550, 650, 750, and 950 μs). The range of n_e and T_e is $1-10 \times 10^{12} \text{ cm}^{-3}$ and 3–5 eV, respectively. Overall, the measured I_m agrees well with the expected I_m from equations (3)–(5) even with unquantified uncertainties such as the spatial separation of the Langmuir probe from the filament and probe array which affects n_e and T_e measurements, background electric fields and fluctuations, and the effects of the electron beam versus the biasing of the field lines by the filament. This indicates that effects from those uncertainties are not significant. The dashed line is the identity line, not a fit to data. The vertical error bars for the expected beam current comes mostly from uncertainties in I_m, T_e, n_e, and T_e measurements, which are typically 5% for this condition. The uncertainty in the effective beam width, σ is also taken into account, which is 3%. This uncertainty is determined by the standard deviation of the expected I_m from equations (3)–(5) even with ΔV_f perturbation at $R = 0.62 \text{ m}$ to estimate what the emitted current from the filament should be.

5. Conclusion

The results presented here suggests a new way of tracing a field line in a high density plasma, where the conventional tracing method by detecting light from the electron beam is not viable. We demonstrate that the presence of the electron...
beam can be detected by measuring the floating potential after traveling about 0.20 m along the magnetic field. Moreover, there is no sign of noticeable broadening of the beam. These results prove that field line mapping in a high density plasma, in principle, can be achieved with a 2D or 3D mesh of floating potential probes. In addition, the stochasticity of the field line can be also determined with a 2D mesh of floating potential probes. If the beam width is observed to broaden far from the filament, one source of this broadening might be a stochastic magnetic field.

Possible effects from the two-stream instability [14–16] on the initial beam velocity must be discussed. The applicability of this method with a longer traveling distance may be limited by the broadening of the injected beam caused by high frequency instabilities as well as cross-field current driven by lower hybrid waves [17]. Even with instabilities, field line tracing by the floating potential measurement may be still possible as long as the electron beam is not significantly broadened. The dependence of the beam radius on the traveling distance is a future research topic and this future work will be crucial for the ultimate use of this diagnostic, which is determining the complex local 2D/3D magnetic geometry for studies of reconnection.

The floating potential profile also provides important information on the spatial profile of beam electrons, which suggests another application. The precise measurement of the 2D electron current density profile from an electron gun, for example, can be achieved by measuring 2D profiles of the floating potential in front of the electron gun with a background plasma. With the known beam velocity, this information can be easily converted to 2D profiles of the electron beam density [18]. This is a large advantage, since the floating potential measurement does not require complex electronic circuits, compared to the Langmuir probe measurement.

Acknowledgments

This work is supported by the DOE contract No. DE-AC0209CH11466. The authors thank R Cutler and Chris Brunkhorst for their technical support. Data used for this manuscript is available in the DataSpace of Princeton University (http://arks.princeton.edu/ark:/88435/dsp01x920g025r).

ORCID iDs

Jongsoo Yoo © https://orcid.org/0000-0003-3881-1995

References

[8] Chan L Y and Stenzel R L 1994 Beam scattering and heating at the front of an electron beam injected into a plasma Phys. Plasmas 1 2063–71